This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342683 #21 Jun 01 2023 01:56:09 %S A342683 9,9,5,9,3,9,2,0,1,1,2,5,5,1,5,1,4,6,8,3,4,8,3,6,4,7,2,8,0,5,5,4,5,3, %T A342683 2,4,0,0,5,0,2,2,7,7,8,4,5,8,9,3,0,3,6,2,7,8,5,3,5,4,2,4,5,5,5,4,1,3, %U A342683 8,5,7,4,6,2,0,9,4,0,4,5,4,2,6,5,1,5,9 %N A342683 Decimal expansion of 1/zeta(8). %C A342683 1/zeta(8) is the probability that 8 randomly selected numbers will be coprime. %H A342683 Karl-Heinz Hofmann, <a href="/A342683/b342683.txt">Table of n, a(n) for n = 0..10000</a> %H A342683 Wikipedia, <a href="https://en.wikipedia.org/wiki/Riemann_zeta_function">Riemann zeta function</a>. %H A342683 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A342683 Equals 1/A013666 = 9450/Pi^8. %F A342683 From _Amiram Eldar_, Jun 01 2023: (Start) %F A342683 Equals Sum_{k>=1} mu(k)/k^8, where mu is the Möbius function (A008683). %F A342683 Equals Product_{p prime} (1 - 1/p^8). (End) %e A342683 0.9959392011255151468348364728055453240050227784589... %p A342683 evalf(9450/Pi^8,100) ; # _R. J. Mathar_, Jun 04 2021 %t A342683 RealDigits[1/Zeta[8], 10, 100][[1]] (* _Amiram Eldar_, May 18 2021 *) %o A342683 (PARI) 1/zeta(8) %Y A342683 Cf. A008683, A059956, A215267, A343359, A013666. %K A342683 nonn,cons %O A342683 0,1 %A A342683 _Karl-Heinz Hofmann_, May 18 2021