This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342686 #21 May 11 2024 09:41:57 %S A342686 4097,51446,51477,51688,52469,54570,59221,68252,68905,84213,110494, %T A342686 131104,151445,212496,300277,325174,325713,355114,422135,422738, %U A342686 589269,637418,794434,810820,876734,876765,876976,877757,879858,884509,893540,909501,924912,935782,976733,995571,1037784,1083457 %N A342686 Numbers that are the sum of five fifth powers in exactly two ways. %C A342686 This sequence differs from A342685: %C A342686 13124675 = 1^5 + 9^5 + 10^5 + 20^5 + 25^5 %C A342686 = 2^5 + 5^5 + 12^5 + 23^5 + 23^5 %C A342686 = 16^5 + 19^5 + 20^5 + 20^5 + 20^5, %C A342686 so 13124675 is in A342685, but is not in this sequence. %H A342686 David Consiglio, Jr., <a href="/A342686/b342686.txt">Table of n, a(n) for n = 1..20000</a> %e A342686 51477 = 2^5 + 4^5 + 7^5 + 7^5 + 7^5 %e A342686 = 2^5 + 5^5 + 6^5 + 6^5 + 8^5 %e A342686 so 51477 is a term of this sequence. %o A342686 (Python) %o A342686 from itertools import combinations_with_replacement as cwr %o A342686 from collections import defaultdict %o A342686 keep = defaultdict(lambda: 0) %o A342686 power_terms = [x**5 for x in range(1, 500)] %o A342686 for pos in cwr(power_terms, 5): %o A342686 tot = sum(pos) %o A342686 keep[tot] += 1 %o A342686 rets = sorted([k for k, v in keep.items() if v == 2]) %o A342686 for x in range(len(rets)): %o A342686 print(rets[x]) %Y A342686 Cf. A342685, A342688, A344237, A344643, A344645, A346357. %K A342686 nonn %O A342686 1,1 %A A342686 _David Consiglio, Jr._, May 18 2021