A342689 Square array read by antidiagonals (upwards): A(n,k) = (k^Fibonacci(n) - 1) / (k - 1) for k >= 0 and n >= 0 with lim_{k -> 1} A(n,k) = A(n,1) = Fibonacci(n).
0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 3, 3, 1, 1, 0, 1, 5, 7, 4, 1, 1, 0, 1, 8, 31, 13, 5, 1, 1, 0, 1, 13, 255, 121, 21, 6, 1, 1, 0, 1, 21, 8191, 3280, 341, 31, 7, 1, 1, 0, 1, 34, 2097151, 797161, 21845, 781, 43, 8, 1, 1, 0, 1, 55, 17179869184, 5230176601, 22369621, 97656, 1555, 57, 9, 1, 1, 0
Offset: 0
Examples
The array A(n,k) for k >= 0 and n >= 0 begins: n \ k: 0 1 2 3 4 5 6 7 8 9 10 11 ========================================================================= 0 : 0 0 0 0 0 0 0 0 0 0 0 0 1 : 1 1 1 1 1 1 1 1 1 1 1 1 2 : 1 1 1 1 1 1 1 1 1 1 1 1 3 : 1 2 3 4 5 6 7 8 9 10 11 12 4 : 1 3 7 13 21 31 43 57 73 91 111 133 5 : 1 5 31 121 341 781 1555 2801 6 : 1 8 255 3280 21845 97656 7 : 1 13 8191 797161 22369621 8 : 1 21 2097151 5230176601 9 : 1 34 17179869184 10 : 1 55 11 : 1 89 etc.
Crossrefs
Formula
A(n,k) = (k - 1) * A(n-1,k) * A(n-2,k) + A(n-1,k) + A(n-2,k) for k >= 0 and n > 1 with initial values A(0,k) = 0 and A(1,k) = 1.
Comments