cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342695 a(n) is the number of primes in an n X n square array that do not appear on its border, with the elements of the square array being the numbers from 1..n^2, listed in increasing order by rows.

This page as a plain text file.
%I A342695 #8 May 31 2021 19:05:05
%S A342695 0,0,1,2,4,4,8,10,14,15,21,21,27,31,36,42,48,46,58,61,68,73,83,83,96,
%T A342695 100,110,114,127,123,144,146,157,165,175,179,201,201,212,221,241,235,
%U A342695 258,265,275,282,303,301,328,330,346,351,381,377,403,406,427,433,455,452,486,493
%N A342695 a(n) is the number of primes in an n X n square array that do not appear on its border, with the elements of the square array being the numbers from 1..n^2, listed in increasing order by rows.
%F A342695 a(n) = pi(n*(n-1)) - pi(n) - Sum_{k=1..n-2} (pi(n*k+1) - pi(n*k)).
%e A342695                                                       [1   2  3  4  5]
%e A342695                                       [1   2  3  4]   [6   7  8  9 10]
%e A342695                             [1 2 3]   [5   6  7  8]   [11 12 13 14 15]
%e A342695                    [1 2]    [4 5 6]   [9  10 11 12]   [16 17 18 19 20]
%e A342695            [1]     [3 4]    [7 8 9]   [13 14 15 16]   [21 22 23 24 25]
%e A342695 ------------------------------------------------------------------------
%e A342695   n         1        2         3            4                 5
%e A342695 ------------------------------------------------------------------------
%e A342695   a(n)      0        0         1            2                 4
%e A342695 ------------------------------------------------------------------------
%e A342695   primes   {}       {}        {5}        {7,11}         {7,13,17,19}
%e A342695 ------------------------------------------------------------------------
%t A342695 Table[PrimePi[n*(n - 1)] - PrimePi[n] - Sum[PrimePi[n*k + 1] - PrimePi[n*k], {k, n - 2}], {n, 100}]
%Y A342695 Cf. A000720 (pi), A038107, A221490, A344316 (on border), A344349.
%K A342695 nonn
%O A342695 1,4
%A A342695 _Wesley Ivan Hurt_, May 18 2021