cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342697 For any number n with binary expansion Sum_{k >= 0} b(k) * 2^k, the binary expansion of a(n) is Sum_{k >= 0} floor((b(k) + b(k+1) + b(k+2))/2) * 2^k.

This page as a plain text file.
%I A342697 #23 Aug 06 2025 17:36:12
%S A342697 0,0,0,1,0,1,3,3,0,0,2,3,6,7,7,7,0,0,0,1,4,5,7,7,12,12,14,15,14,15,15,
%T A342697 15,0,0,0,1,0,1,3,3,8,8,10,11,14,15,15,15,24,24,24,25,28,29,31,31,28,
%U A342697 28,30,31,30,31,31,31,0,0,0,1,0,1,3,3,0,0,2,3,6
%N A342697 For any number n with binary expansion Sum_{k >= 0} b(k) * 2^k, the binary expansion of a(n) is Sum_{k >= 0} floor((b(k) + b(k+1) + b(k+2))/2) * 2^k.
%C A342697 The value of the k-th bit in a(n) corresponds to the most frequent value in the bit triple starting at the k-th bit in n.
%H A342697 Rémy Sigrist, <a href="/A342697/b342697.txt">Table of n, a(n) for n = 0..8192</a>
%H A342697 Michael De Vlieger, <a href="/A342697/a342697.png">Log log scatterplot of a(n)</a>, n = 0..2^20.
%H A342697 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A342697 a(n) = 0 iff n belongs to A048715.
%F A342697 a(n) = floor(A048730(n)/8) = floor(A048733(n)/2). - _Kevin Ryde_, Mar 26 2021
%e A342697 The first terms, in decimal and in binary, are:
%e A342697   n   a(n)  bin(n)  bin(a(n))
%e A342697   --  ----  ------  ---------
%e A342697    0     0       0          0
%e A342697    1     0       1          0
%e A342697    2     0      10          0
%e A342697    3     1      11          1
%e A342697    4     0     100          0
%e A342697    5     1     101          1
%e A342697    6     3     110         11
%e A342697    7     3     111         11
%e A342697    8     0    1000          0
%e A342697    9     0    1001          0
%e A342697   10     2    1010         10
%e A342697   11     3    1011         11
%e A342697   12     6    1100        110
%e A342697   13     7    1101        111
%e A342697   14     7    1110        111
%e A342697   15     7    1111        111
%t A342697 A342697[n_] := Quotient[7*n - BitXor[n, 2*n, 4*n], 8];
%t A342697 Array[A342697, 100, 0] (* _Paolo Xausa_, Aug 06 2025 *)
%o A342697 (PARI) a(n) = sum(k=0, #binary(n), ((bittest(n, k)+bittest(n, k+1)+bittest(n, k+2))>=2) * 2^k)
%Y A342697 Cf. A048715, A048730, A048733, A342698, A342700.
%K A342697 nonn,base,easy,look
%O A342697 0,7
%A A342697 _Rémy Sigrist_, Mar 18 2021