cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342698 For any number n with binary expansion (b(1), b(2), ..., b(k)), the binary expansion of a(n) is (floor((b(k)+b(1)+b(2))/2), floor((b(1)+b(2)+b(3))/2), ..., floor((b(k-1)+b(k)+b(1))/2)).

This page as a plain text file.
%I A342698 #12 Jan 10 2024 16:31:22
%S A342698 0,1,1,3,0,7,7,7,0,9,5,15,12,15,15,15,0,17,1,19,8,27,15,31,24,25,29,
%T A342698 31,28,31,31,31,0,33,1,35,0,35,7,39,16,49,21,55,28,63,31,63,48,49,49,
%U A342698 51,56,59,63,63,56,57,61,63,60,63,63,63,0,65,1,67,0,67,7
%N A342698 For any number n with binary expansion (b(1), b(2), ..., b(k)), the binary expansion of a(n) is (floor((b(k)+b(1)+b(2))/2), floor((b(1)+b(2)+b(3))/2), ..., floor((b(k-1)+b(k)+b(1))/2)).
%C A342698 This sequence is a variant of A342697; here we deal with bit triples in a "cyclic" binary representation of n.
%H A342698 Rémy Sigrist, <a href="/A342698/b342698.txt">Table of n, a(n) for n = 0..8192</a>
%H A342698 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A342698 a(n) + A342700(n) = A003817(n).
%F A342698 a(n) = n iff n belongs to A342699.
%e A342698 The first terms, in decimal and in binary, are:
%e A342698   n   a(n)  bin(n)  bin(a(n))
%e A342698   --  ----  ------  ---------
%e A342698    0     0       0          0
%e A342698    1     1       1          1
%e A342698    2     1      10          1
%e A342698    3     3      11         11
%e A342698    4     0     100          0
%e A342698    5     7     101        111
%e A342698    6     7     110        111
%e A342698    7     7     111        111
%e A342698    8     0    1000          0
%e A342698    9     9    1001       1001
%e A342698   10     5    1010        101
%e A342698   11    15    1011       1111
%e A342698   12    12    1100       1100
%e A342698   13    15    1101       1111
%e A342698   14    15    1110       1111
%e A342698   15    15    1111       1111
%o A342698 (PARI) a(n) = my (w=#binary(n)); sum(k=0, w-1, ((bittest(n, (k-1)%w)+bittest(n, k%w)+bittest(n, (k+1)%w))>=2) * 2^k)
%Y A342698 Cf. A003817, A342697, A342699 (fixed points), A342700.
%K A342698 nonn,base
%O A342698 0,4
%A A342698 _Rémy Sigrist_, Mar 18 2021