cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342717 Primes q such that 15*q-4, 15*q-2, 15*q+2 and 15*q+4 are all primes.

This page as a plain text file.
%I A342717 #17 Apr 09 2021 09:42:35
%S A342717 7,13,139,1049,4481,8147,11047,11411,13049,17191,17921,25913,26321,
%T A342717 28057,30169,33349,37561,38177,40487,42139,60493,65563,72871,74507,
%U A342717 74521,77041,77069,93491,112363,127849,130621,138389,142787,144577,145109,158227,161561,165311
%N A342717 Primes q such that 15*q-4, 15*q-2, 15*q+2 and 15*q+4 are all primes.
%C A342717 The 4 generated primes always end with 1, 3, 7, 9 in base 10 in this order.
%e A342717 a(1) = 7 is a term since 7 is prime and 101, 103, 107, 109 are also prime.
%e A342717 Some larger examples include:
%e A342717   171850185252132304529579363573540628229,
%e A342717   204480960976715817535460959250816270267,
%e A342717   338006806817314508391110932058603239271.
%t A342717 Select[Prime@ Range[10^4], AllTrue[Flatten[#1 + {-#2, #2}], PrimeQ] & @@ {15 #, {2, 4}} &] (* _Michael De Vlieger_, Mar 19 2021 *)
%o A342717 (PARI) isok(p) = isprime(p) && isprime(15*p-4) && isprime(15*p-2) && isprime(15*p+2) && isprime(15*p+4);
%K A342717 nonn
%O A342717 1,1
%A A342717 _Tamas Nagy_, Mar 19 2021