A342720 a(n) is the number of concave integer quadrilaterals (up to congruence) with integer side lengths a,b,c,d with n=Max(a,b,c,d) and integer diagonals e,f.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 3, 1, 2, 2, 3, 1, 4, 2, 4, 2, 5, 3, 7, 1, 2, 4, 3, 13, 7, 20, 12, 5, 3, 7, 10, 3, 8, 2, 14, 12, 10, 15, 17, 8, 11, 10, 20, 13, 15, 10, 45, 9, 18, 25, 46, 38, 18, 2, 25, 20, 30, 18, 32, 17, 32, 43
Offset: 1
Keywords
Examples
a(15)=1 because the only concave integer quadrilateral with longest edge length 15 has a=15, b=13, c=13, d=15 and diagonals e=4 and f=24. a(20)=3 because there are three solutions (a,b,c,d,e,f): (20,13,15,18,9,26), (20,13,13,20,11,24) and {20,15,15,20,7,24}.
Programs
-
Mathematica
an={}; he[a_,b_,e_]:=1/(2 e) Sqrt[(-((a-b-e) (a+b-e) (a-b+e) (a+b+e)))] paX[e_]:={e,0} (*vertex A coordinate*) pbX[a_,b_,e_]:={(-a^2+b^2+e^2)/(2 e),he[a,b,e]}(*vertex B coordinate*) pc={0,0};(*vertex C coordinate*) pdX[c_,d_,e_]:={(c^2-d^2+e^2)/(2 e),-he[c,d,e]}(*vertex D coordinate*) concaveQ[{bx_,by_},{dx_,dy_},e_]:=If[by dx-bx dy<0||by dx-bx dy>(by-dy) e,True,False] gQ[x_,y_]:=Module[{z=x-y,res=False},Do[If[z[[i]]>0,res=True;Break[], If[z[[i]]<0,Break[]]],{i,1,4}];res] canonicalQ[{a_,b_,c_,d_}]:=Module[{m={a,b,c,d}},If[(gQ[{b,a,d,c},m]||gQ[{d,c,b,a},m]||gQ[{c,d,a,b},m]),False,True]] Do[cnt=0; Do[pa=paX[e];pb=pbX[a,b,e];pd=pdX[c,d,e]; If[(f=Sqrt[(pb-pd).(pb-pd)];IntegerQ[f])&&concaveQ[pb,pd,e]&&canonicalQ[{a,b,c,d}],cnt++ (*;Print[{{a,b,c,d,e,f},Graphics[Line[{pa,pb,pc,pd,pa}]]}]*)], {b,1,a},{e,a-b+1,a-1},{c,1,a},{d,Abs[e-c]+1,Min[a,e+c-1]}]; AppendTo[an,cnt], {a,1,75} ] an
Comments