cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342721 a(n) is the number of concave integer quadrilaterals (up to congruence) with integer side lengths a,b,c,d with n=Max(a,b,c,d), integer diagonals e,f and integer area.

This page as a plain text file.
%I A342721 #15 Apr 16 2021 00:13:31
%S A342721 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,0,0,2,0,0,0,3,1,1,0,0,1,3,0,0,0,2,
%T A342721 1,0,6,0,4,4,2,1,0,0,1,0,0,6,0,2,8,6,2,0,1,2,0,2,0,9,0,0,2,0,13,1,0,4,
%U A342721 0,3,0,3,5,10,11
%N A342721 a(n) is the number of concave integer quadrilaterals (up to congruence) with integer side lengths a,b,c,d with n=Max(a,b,c,d), integer diagonals e,f and integer area.
%C A342721 Without loss of generality we assume that a is the largest side length and that the diagonal e divides the concave quadrilateral into two triangles with sides a,b,e and c,d,e. Then e < a is a necessary condition for concavity. The triangle inequality further implies e > a-b and abs(e-c) < d < e+c.
%e A342721 a(66)=1 because the only concave integer quadrilateral with longest edge length 66 and integer area has sides a=66, b=55, c=12, d=65, diagonals e=55, f=65 and area 1650.
%t A342721 an={};
%t A342721 area[a_,b_,c_,d_,e_,f_]:=(1/4)Sqrt[(4e^2 f^2-(a^2+c^2-b^2-d^2)^2)]
%t A342721 he[a_,b_,e_]:=(1/(2 e))Sqrt[(-((a-b-e) (a+b-e) (a-b+e) (a+b+e)))];
%t A342721 paX[e_]:={e,0} (*vertex A coordinate*)
%t A342721 pbX[a_,b_,e_]:={(-a^2+b^2+e^2)/(2 e),he[a,b,e]}(*vertex B coordinate*)
%t A342721 pc={0,0};(*vertex C coordinate*)
%t A342721 pdX[c_,d_,e_]:={(c^2-d^2+e^2)/(2 e),-he[c,d,e]}(*vertex D coordinate*)
%t A342721 concaveQ[{bx_,by_},{dx_,dy_},e_]:=If[by dx-bx dy<0||by dx-bx dy>(by-dy) e,True,False]
%t A342721 gQ[x_,y_]:=Module[{z=x-y,res=False},Do[If[z[[i]]>0,res=True;Break[],If[z[[i]]<0,Break[]]],{i,1,4}];res]
%t A342721 canonicalQ[{a_,b_,c_,d_}]:=Module[{m={a,b,c,d}},If[(gQ[{b,a,d,c},m]||gQ[{d,c,b,a},m]||gQ[{c,d,a,b},m]),False,True]]
%t A342721 Do[cnt=0;
%t A342721 Do[pa=paX[e];pb=pbX[a,b,e];pd=pdX[c,d,e];
%t A342721 If[(f=Sqrt[(pb-pd).(pb-pd)];IntegerQ[f])&&(ar=area[a,b,c,d,e,f]; IntegerQ[ar])&&concaveQ[pb,pd,e]&&canonicalQ[{a,b,c,d}],cnt++
%t A342721 (*;Print[{{a,b,c,d,e,f,ar},Graphics[Line[{pa,pb,pc,pd,pa}]]}]*)],
%t A342721 {b,1,a},{e,a-b+1,a-1},{c,1,a},{d,Abs[e-c]+1,Min[a,e+c-1]}];
%t A342721 AppendTo[an,cnt],{a,1,75}
%t A342721 ]
%t A342721 an
%Y A342721 Cf. A340858 for trapezoids, A342720 for concave integer quadrilaterals with arbitrary area.
%K A342721 nonn
%O A342721 1,17
%A A342721 _Herbert Kociemba_, Mar 19 2021