cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342723 a(n) is the number of convex integer quadrilaterals (up to congruence) with integer side lengths a,b,c,d with n=Max(a,b,c,d), integer diagonals e,f and integer area.

This page as a plain text file.
%I A342723 #10 Apr 27 2021 02:45:23
%S A342723 0,0,0,1,1,0,0,1,0,1,0,2,1,1,3,1,2,0,0,4,3,0,0,4,7,2,0,5,2,5,0,1,0,3,
%T A342723 4,3,4,0,6,7,3,4,0,3,4,0,0,5,0,9,10,9,3,0,5,8,0,4,0,17,4,0,9,1,19,2,0,
%U A342723 6,2,7,0,7,7,7,23,2,8,12,0,10,0,5,0,15,27
%N A342723 a(n) is the number of convex integer quadrilaterals (up to congruence) with integer side lengths a,b,c,d with n=Max(a,b,c,d), integer diagonals e,f and integer area.
%C A342723 Without loss of generality we assume that a is the largest side length and that the diagonal e divides the convex quadrilateral into two triangles with sides a,b,e and c,d,e. The triangle inequality implies e > a-b and abs(e-c) < d < e+c.
%e A342723 a(4)=1 is the smallest possible solution and is a rectangle with a=c=4, b=d=3, e=f=5 and area 12. a(24)=4 includes the smallest possible solution with all sides a,b,c,d different and a=24, b=20, c=15, d=7, e=20, f=25 and area 234. Furthermore there are three rectangles with a=24,b=7, a=24,b=10 and a=24,b=18.
%t A342723 an={};
%t A342723 area[a_,b_,c_,d_,e_,f_]:=1/4 Sqrt[4e^2 f^2-(a^2+c^2-b^2-d^2)^2];
%t A342723 he[a_,b_,e_]:=1/(2 e) Sqrt[-(a-b-e) (a+b-e) (a-b+e) (a+b+e)];
%t A342723 paX[e_]:={e,0} (*vertex A coordinate*)
%t A342723 pbX[a_,b_,e_]:={(-a^2+b^2+e^2)/(2 e),he[a,b,e]}(*vertex B coordinate*)
%t A342723 pc={0,0};(*vertex C coordinate*)pdX[c_,d_,e_]:={(c^2-d^2+e^2)/(2 e),-he[c,d,e]}(*vertex D coordinate*)
%t A342723 convexQ[{bx_,by_},{dx_,dy_},e_]:=If[(by-dy) e>by dx-bx dy>0,True,False]
%t A342723 (*define order on tuples*)
%t A342723 gQ[x_,y_]:=Module[{z=x-y,res=False},Do[If[z[[i]]>0,res=True;Break[],If[z[[i]]<0,Break[]]],{i,1,6}];res]
%t A342723 (*check if tuple is canonical*)
%t A342723 canonicalQ[{a_,b_,c_,d_,e_,f_}]:=Module[{x={a,b,c,d,e,f}},If[(gQ[{b,a,d,c,e,f},x]||gQ[{d,c,b,a,e,f},x]||gQ[{c,d,a,b,e,f},x]||gQ[{b,c,d,a,f,e},x]||gQ[{a,d,c,b,f,e},x]||gQ[{c,b,a,d,f,e},x]||gQ[{d,a,b,c,f,e},x]),False,True]]
%t A342723 Do[cnt=0;
%t A342723 Do[pa=paX[e];pb=pbX[a,b,e];pd=pdX[c,d,e];
%t A342723 If[(f=Sqrt[(pb-pd).(pb-pd)];IntegerQ[f])&&(ar=area[a,b,c,d,e,f]; IntegerQ[ar])&&convexQ[pb,pd,e]&&canonicalQ[{a,b,c,d,e,f}],cnt++
%t A342723 (*;Print[{{a,b,c,d,e,f,ar},Graphics[Line[{pa,pb,pc,pd,pa}]]}]*)],{b,1,a},{e,a-b+1,a+b-1},{c,1,a},{d,Abs[e-c]+1,Min[a,e+c-1]}];
%t A342723 AppendTo[an,cnt],{a,1,85}]
%t A342723 an
%Y A342723 Cf. A340858 for trapezoids, A342720 and A342721 for concave integer quadrilaterals, A342722 for convex integer quadrilaterals with arbitrary area.
%K A342723 nonn
%O A342723 1,12
%A A342723 _Herbert Kociemba_, Apr 25 2021