cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342729 Self numbers in base i-1: numbers not of the form k + A066323(k).

Original entry on oeis.org

1, 3, 5, 7, 9, 22, 24, 26, 39, 41, 43, 56, 58, 60, 73, 75, 77, 90, 92, 94, 107, 109, 111, 136, 138, 140, 153, 155, 157, 170, 172, 174, 199, 201, 203, 216, 218, 220, 233, 235, 237, 262, 264, 266, 279, 281, 283, 296, 298, 300, 313, 315, 317, 330, 332, 334, 347, 349
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2021

Keywords

Comments

Equivalently, self numbers in base -4, since A066323(k) is also the sum of the digits of k in base -4.
Analogous to self numbers (A003052) using base i-1 representation (A271472) instead of decimal expansion.
The number of terms not exceeding 10^k, for k=1,2,..., is 5, 20, 155, 1507, 15008, 150007, 1500014, 15000011. Is the asymptotic density of this sequence exactly 3/20?

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.

Crossrefs

Similar sequences: A003052 (decimal), A010061 (binary), A010064 (base 4), A010067 (base 6), A010070 (base 8), A339211 (Zeckendorf), A339212 (dual Zeckendorf), A339213 (base phi), A339214 (factorial base), A339215 (primorial base).

Programs

  • Mathematica
    s[n_] := Module[{v = {{0, 0, 0, 0}, {0, 0, 0, 1}, {1, 1, 0, 0}, {1, 1, 0, 1}}}, Plus @@ Flatten @ v[[1 + Reverse @ Most[Mod[NestWhileList[(# - Mod[#, 4])/-4 &, n, # != 0 &], 4]]]]]; f[n_] := n + s[n]; m = 1000; Complement[Range[m], Select[Union@Array[f, m], # <= m &]]