A342759 Fold a square sheet of paper alternately vertically to the left and horizontally downwards; after each fold, draw a line along each inward crease; after n folds, the resulting graph has a(n) regions.
1, 2, 3, 4, 6, 10, 16, 25, 43, 73, 133, 241, 457, 865, 1681, 3265, 6433, 12673, 25153, 49921, 99457, 198145, 395521, 789505, 1577473, 3151873, 6300673, 12595201, 25184257, 50356225, 100700161
Offset: 0
Examples
See illustration in Links section.
References
- Rémy Sigrist and N. J. A. Sloane, Notes on Two-Dimensional Paper-Folding, Manuscript in preparation, April 2021.
Links
- J.-P. Allouche and M. Mendes France, Automata and Automatic Sequences, in: Axel F. and Gratias D. (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11.
- J.-P. Allouche and M. Mendes France, Automata and Automatic Sequences, in: Axel F. and Gratias D. (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11. [Local copy]
- Rémy Sigrist, Illustration of initial terms
- Rémy Sigrist, Illustration of the number of vertices of degree 1 for n = 0..8
- Rémy Sigrist, C# program for A342759
- N. J. A. Sloane, Illustration of G(n) for n = 0..4
Comments