cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342765 Array T(n, k), n, k > 0, read by antidiagonals; T(n, k) = max(A006530(n), A006530(k)) * T(n/A006530(n), k/A006530(k)) with T(1, 1) = 1.

This page as a plain text file.
%I A342765 #14 Apr 04 2021 06:22:23
%S A342765 1,2,2,3,2,3,4,3,3,4,5,4,3,4,5,6,5,6,6,5,6,7,6,5,4,5,6,7,8,7,6,10,10,
%T A342765 6,7,8,9,8,7,6,5,6,7,8,9,10,9,12,14,10,10,14,12,9,10,11,10,9,8,7,6,7,
%U A342765 8,9,10,11,12,11,10,9,20,14,14,20,9,10,11,12
%N A342765 Array T(n, k), n, k > 0, read by antidiagonals; T(n, k) = max(A006530(n), A006530(k)) * T(n/A006530(n), k/A006530(k)) with T(1, 1) = 1.
%C A342765 To compute T(n, k):
%C A342765 - write the prime factors of n and of k in ascending order with multiplicities on two lines, right aligned,
%C A342765 - take the largest prime number in each column and multiply back,
%C A342765 - for example, for T(12, 14):
%C A342765      12   ->   2 2 3
%C A342765      14   ->     2 7
%C A342765                -----
%C A342765                2 2 7   ->   28 = T(12, 14)
%C A342765 This sequence is closely related to lunar addition (A087061):
%C A342765 - let n and k be two p-smooth numbers,
%C A342765 - let f be the function that associates to a p-smooth number, say m, the unique number whose (p+1)-base digits are prime, nondecreasing and whose product is m,
%C A342765 - let g be the inverse of f,
%C A342765 - then for any p-smooth numbers n and k, T(n, k) = g(f(n) "+" f(k)) where "+" denotes lunar addition in base p+1,
%C A342765 - see A342767 for the corresponding multiplication.
%H A342765 Rémy Sigrist, <a href="/A342765/b342765.txt">Table of n, a(n) for n = 1..10011</a>
%H A342765 <a href="/index/Di#dismal">Index entries for sequences related to dismal (or lunar) arithmetic</a>
%F A342765 T(n, k) = T(k, n).
%F A342765 T(m, T(n, k)) = T(T(m, n), k).
%F A342765 T(n, 1) = n.
%F A342765 T(n, n) = n.
%F A342765 A001222(T(n, k)) = max(A001222(n), A001222(k)).
%F A342765 A006530(T(n, k)) = max(A006530(n), A006530(k)).
%e A342765 Array T(n, k) begins:
%e A342765   n\k|   1   2   3   4   5   6   7   8   9  10  11  12  13  14
%e A342765   ---+--------------------------------------------------------
%e A342765     1|   1   2   3   4   5   6   7   8   9  10  11  12  13  14
%e A342765     2|   2   2   3   4   5   6   7   8   9  10  11  12  13  14
%e A342765     3|   3   3   3   6   5   6   7  12   9  10  11  12  13  14
%e A342765     4|   4   4   6   4  10   6  14   8   9  10  22  12  26  14
%e A342765     5|   5   5   5  10   5  10   7  20  15  10  11  20  13  14
%e A342765     6|   6   6   6   6  10   6  14  12   9  10  22  12  26  14
%e A342765     7|   7   7   7  14   7  14   7  28  21  14  11  28  13  14
%e A342765     8|   8   8  12   8  20  12  28   8  18  20  44  12  52  28
%e A342765     9|   9   9   9   9  15   9  21  18   9  15  33  18  39  21
%e A342765    10|  10  10  10  10  10  10  14  20  15  10  22  20  26  14
%e A342765    11|  11  11  11  22  11  22  11  44  33  22  11  44  13  22
%e A342765    12|  12  12  12  12  20  12  28  12  18  20  44  12  52  28
%e A342765    13|  13  13  13  26  13  26  13  52  39  26  13  52  13  26
%e A342765    14|  14  14  14  14  14  14  14  28  21  14  22  28  26  14
%o A342765 (PARI) gpf(n) = if (n==1, 1, my (p=factor(n)[,1]~); p[#p])
%o A342765 T(n, k) = if (n==1 || k==1, max(n, k), my (p=gpf(n), q=gpf(k)); max(p, q)*T(n/p, k/q))
%Y A342765 Cf. A001222, A006530, A087061, A342766, A342767.
%K A342765 nonn,tabl
%O A342765 1,2
%A A342765 _Rémy Sigrist_, Apr 02 2021