cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342767 Array T(n, k), n, k > 0, read by antidiagonals; a variant of lunar multiplication (A087062) based on prime factorizations of numbers (see Comments section for precise definition).

This page as a plain text file.
%I A342767 #15 Apr 08 2021 10:48:40
%S A342767 1,1,1,1,2,1,1,2,2,1,1,4,3,4,1,1,2,4,4,2,1,1,4,3,8,3,4,1,1,2,6,4,4,6,
%T A342767 2,1,1,8,3,8,5,8,3,8,1,1,4,8,4,6,6,4,8,4,1,1,4,9,16,5,12,5,16,9,4,1,1,
%U A342767 2,6,8,8,6,6,8,8,6,2,1,1,8,3,8,9,16,7,16,9,8,3,8,1
%N A342767 Array T(n, k), n, k > 0, read by antidiagonals; a variant of lunar multiplication (A087062) based on prime factorizations of numbers (see Comments section for precise definition).
%C A342767 To compute T(n, k):
%C A342767 - write the prime factors of n and of k in ascending order with multiplicities on two lines, right aligned,
%C A342767 - to "multiply" two prime numbers: take the smallest,
%C A342767 - to "add" two prime numbers: take the largest,
%C A342767 - for example, for T(12, 14):
%C A342767      12   ->   2 2 3
%C A342767      14   -> x   2 7
%C A342767              -------
%C A342767                2 2 3
%C A342767            + 2 2 2
%C A342767            ---------
%C A342767              2 2 2 3   ->  24 = T(12, 14)
%C A342767 This sequence is closely related to lunar multiplication (A087062):
%C A342767 - let n and k be two p-smooth numbers,
%C A342767 - let f be the function that associates to a p-smooth number, say m, the unique number whose (p+1)-base digits are prime, nondecreasing and whose product is m,
%C A342767 - let g be the inverse of f,
%C A342767 - then for any p-smooth numbers n and k, T(n, k) = g(f(n) "*" f(k)) where "*" denotes lunar product in base p+1,
%C A342767 - as T(n, p) = n for any prime number >= A006530(n), we don't have prime numbers here,
%C A342767 - however, if we consider only p-smooth numbers (for some prime number p), then p is the "unit" and the semiprimes p*q (with q <= p) are "prime".
%H A342767 Rémy Sigrist, <a href="/A342767/b342767.txt">Table of n, a(n) for n = 1..10011</a>
%H A342767 Rémy Sigrist, <a href="/A342767/a342767.gp.txt">PARI program for A342767</a>
%H A342767 <a href="/index/Di#dismal">Index entries for sequences related to dismal (or lunar) arithmetic</a>
%F A342767 T(n, k) = T(k, n).
%F A342767 T(n, n) = A342768(n).
%F A342767 T(n, 1) = 1.
%F A342767 T(n, 2) = A061142(n).
%F A342767 T(n, 3) = A079065(n).
%F A342767 T(n, p) = n for any prime number p >= A006530(n).
%e A342767 Array T(n, k) begins:
%e A342767   n\k|  1  2   3   4   5   6   7   8   9  10  11  12  13  14
%e A342767   ---+------------------------------------------------------
%e A342767     1|  1  1   1   1   1   1   1   1   1   1   1   1   1   1
%e A342767     2|  1  2   2   4   2   4   2   8   4   4   2   8   2   4  ->  A061142
%e A342767     3|  1  2   3   4   3   6   3   8   9   6   3  12   3   6  ->  A079065
%e A342767     4|  1  4   4   8   4   8   4  16   8   8   4  16   4   8
%e A342767     5|  1  2   3   4   5   6   5   8   9  10   5  12   5  10
%e A342767     6|  1  4   6   8   6  12   6  16  18  12   6  24   6  12
%e A342767     7|  1  2   3   4   5   6   7   8   9  10   7  12   7  14
%e A342767     8|  1  8   8  16   8  16   8  32  16  16   8  32   8  16
%e A342767     9|  1  4   9   8   9  18   9  16  27  18   9  36   9  18
%e A342767    10|  1  4   6   8  10  12  10  16  18  20  10  24  10  20
%e A342767    11|  1  2   3   4   5   6   7   8   9  10  11  12  11  14
%e A342767    12|  1  8  12  16  12  24  12  32  36  24  12  48  12  24
%e A342767    13|  1  2   3   4   5   6   7   8   9  10  11  12  13  14
%e A342767    14|  1  4   6   8  10  12  14  16  18  20  14  24  14  28
%o A342767 (PARI) See Links section.
%Y A342767 Cf. A006530, A061142, A079065, A087062, A342765, A342768.
%K A342767 nonn,tabl
%O A342767 1,5
%A A342767 _Rémy Sigrist_, Apr 02 2021