This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342809 #22 Apr 08 2021 11:56:51 %S A342809 8,12,14,24,54,84,114,234,264,294,354,444,504,564,654,684,744,864,954, %T A342809 984,1164,1194,1284,1554,1584,1734,1914,2004,2154,2214,2244,2334,2394, %U A342809 2544,2844,2964,3084,3204,3414,3594 %N A342809 Numbers k such that k-1 and round(k/5) are both prime. %C A342809 Except for a(1) and a(2), all terms == 4 (mod 10). %C A342809 The first three absolute differences (d) between two consecutive rounded (k/5) are respectively equal to 0, 1 and 2 and all the others to 6 or a multiple of 6. %C A342809 Subsequence of A008864, by definition. - _Michel Marcus_, Mar 22 2021 %C A342809 For n >= 3, a(n) = 5*A158318(n-2) - 1. - _Hugo Pfoertner_, Mar 22 2021 %e A342809 8 is a term because 8 - 1 = 7 and 7 is prime and 8/5 = 1.6 which when rounded gives 2 and 2 is also prime. %e A342809 235 is not a term because 235 - 1 = 234 and 234 is not a prime although 235/5 = 47 is prime. %e A342809 Initial terms, associated primes and d: %e A342809 k k - 1 round(k/5) d %e A342809 a(1) 8 7 2 %e A342809 a(2) 12 11 2 0 %e A342809 a(3) 14 13 3 1 %e A342809 a(4) 24 23 5 2 %e A342809 a(5) 54 53 11 6 %e A342809 a(6) 84 83 17 6 %e A342809 a(7) 114 113 23 6 %e A342809 a(8) 234 233 47 24 %e A342809 a(9) 264 263 53 6 %e A342809 a(10) 294 293 59 6 %t A342809 Select[Range[2,5000,2],And@@PrimeQ[{#-1,Round[#/5]}]&] (* _Giorgos Kalogeropoulos_, Apr 01 2021 *) %o A342809 (PARI) %o A342809 for(k = 1,10000,if(isprime(k - 1) && isprime(k\/5),print1(k", "))) %o A342809 (Python) %o A342809 from sympy import isprime %o A342809 A342809_list = [k for k in range(1,10**5) if isprime(k-1) and isprime(k//5+int(k % 5 > 2))] # _Chai Wah Wu_, Apr 08 2021 %Y A342809 Cf. A000040, A007530, A007811, A014561, A259645. %Y A342809 Cf. A008864, A158318. %K A342809 nonn,easy %O A342809 1,1 %A A342809 _Claude H. R. Dequatre_, Mar 22 2021