This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342834 #28 Jul 03 2021 05:44:52 %S A342834 7,797,797997,7979979973,797997997399991,797997997399991999983, %T A342834 7979979973999919999839999991,797997997399991999983999999199999989, %U A342834 797997997399991999983999999199999989999999937,7979979973999919999839999991999999899999999379999999967 %N A342834 a(n) is the number whose decimal expansion consists of the concatenation of the largest 1-digit prime = 7, the largest 2-digit prime = 97, ... up to the largest n-digit prime = A003618(n). %C A342834 a(n) has n*(n+1)/2 digits. %C A342834 a(1) = 7 and a(2) = 797, these are only 2 known indices for which a(n) = A338968(n). %C A342834 The decimal expansion of the limit when n -> oo of a(n) is A340220. %e A342834 The greatest primes with 1, 2 and 3 digits are respectively 7, 97 and 997, hence, a(3) = 7||97||997 = 797997 where || stands for concatenation. %o A342834 (Python) %o A342834 from sympy import prevprime %o A342834 def aupton(nn): %o A342834 astr, alst = "", [] %o A342834 for n in range(1, nn+1): %o A342834 astr += str(prevprime(10**n)); alst.append(int(astr)) %o A342834 return alst %o A342834 print(aupton(10)) # _Michael S. Branicky_, Mar 23 2021 %o A342834 (PARI) a(n) = my(s=""); for (k=1, n, s = Str(s, precprime(10^k))); eval(s); \\ _Michel Marcus_, Mar 24 2021 %Y A342834 Cf. A000217 (number of digits), A338968, A340220, A342835 (number of divisors), A342836 (smallest prime factor). %K A342834 nonn,base %O A342834 1,1 %A A342834 _Bernard Schott_, Mar 23 2021