cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342834 a(n) is the number whose decimal expansion consists of the concatenation of the largest 1-digit prime = 7, the largest 2-digit prime = 97, ... up to the largest n-digit prime = A003618(n).

This page as a plain text file.
%I A342834 #28 Jul 03 2021 05:44:52
%S A342834 7,797,797997,7979979973,797997997399991,797997997399991999983,
%T A342834 7979979973999919999839999991,797997997399991999983999999199999989,
%U A342834 797997997399991999983999999199999989999999937,7979979973999919999839999991999999899999999379999999967
%N A342834 a(n) is the number whose decimal expansion consists of the concatenation of the largest 1-digit prime = 7, the largest 2-digit prime = 97, ... up to the largest n-digit prime = A003618(n).
%C A342834 a(n) has n*(n+1)/2 digits.
%C A342834 a(1) = 7 and a(2) = 797, these are only 2 known indices for which a(n) = A338968(n).
%C A342834 The decimal expansion of the limit when n -> oo of a(n) is A340220.
%e A342834 The greatest primes with 1, 2 and 3 digits are respectively 7, 97 and 997, hence, a(3) = 7||97||997 = 797997 where || stands for concatenation.
%o A342834 (Python)
%o A342834 from sympy import prevprime
%o A342834 def aupton(nn):
%o A342834   astr, alst = "", []
%o A342834   for n in range(1, nn+1):
%o A342834     astr += str(prevprime(10**n)); alst.append(int(astr))
%o A342834   return alst
%o A342834 print(aupton(10)) # _Michael S. Branicky_, Mar 23 2021
%o A342834 (PARI) a(n) = my(s=""); for (k=1, n, s = Str(s, precprime(10^k))); eval(s); \\ _Michel Marcus_, Mar 24 2021
%Y A342834 Cf. A000217 (number of digits), A338968, A340220, A342835 (number of divisors), A342836 (smallest prime factor).
%K A342834 nonn,base
%O A342834 1,1
%A A342834 _Bernard Schott_, Mar 23 2021