This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342837 #27 Mar 31 2021 22:27:34 %S A342837 0,0,3,3,16,40,8,44,112,85,48,24,168,15,182,18,13,151,348,204,437,612, %T A342837 771,75,51,310,796,111,811,350,644,350,469,159,571,544,2239,4,1474,97, %U A342837 2177,175,1400,1791,75,1983,337,2503,854,2397,830,246,5350,1682,153,1581,622 %N A342837 Starting with A342834(n), a(n) is the number of n-digit primes we have to go back from A003618(n) through the sequence of these n-digit primes to get the prime A338968(n). %C A342837 The idea of this sequence comes from _Daniel Suteu_. %C A342837 A338968(n) is the concatenation of A342834(n-1) with the largest n-digit prime p <= A003618(n) such that A342834(n-1)||p is prime where || stands for concatenation. %C A342837 Both A338968(n) and A342834(n) have n*(n+1)/2 digits. %F A342837 a(n) = primepi(A003618(n)) - primepi(A338968(n) mod 10^n). - _David A. Corneth_, Mar 29 2021 %e A342837 For a(2), as A338968(2) = A342834(2) = 7||97 = 797, a(2) = 0. %e A342837 From _Daniel Suteu_, Mar 29 2021: (Start) %e A342837 For a(3), as A003618(1) = 7, A003618(2) = 97 and A003618(3) = 997, we have A342834(3) = 7||97||997 = 797997 while prime A338968(3) = 7||97||977 = 797977. %e A342837 # 7||97||997 = 797997 = 3 * 17 * 15647 is not prime (#1 fail) %e A342837 # 7||97||991 = 797991 = 3 * 461 * 577 is not prime (#2 fail) %e A342837 # 7||97||983 = 797983 = 41 * 19463 is not prime (#3 fail) %e A342837 # 7||97||977 = 797977 = A338968(3) is prime. %e A342837 Therefore, the largest 3-digit prime p <= 997 such that A342834(2)||p is prime, is p = 977. Through the sequence of the 3-digit primes, we have to go back 3 primes from A003618(3) = 997 (991, 983, 977) in order to get A338968(3), hence a(3) = 3. (End) %Y A342837 Cf. A003618, A338968, A342834. %K A342837 nonn,base %O A342837 1,3 %A A342837 _Bernard Schott_, Mar 29 2021 %E A342837 a(3)-a(57) from _Daniel Suteu_, Mar 29 2021