A342840 Irregular triangle: T(n,k) is the number of permutations in S_n that have exactly k occurrences of the pattern 4213. 0 <= k <= A342646(n).
1, 1, 2, 6, 23, 1, 103, 10, 6, 1, 512, 77, 69, 30, 21, 5, 6, 2740, 548, 598, 330, 335, 123, 174, 58, 58, 37, 26, 3, 9, 1, 15485, 3799, 4686, 2970, 3411, 1676, 2338, 1040, 1317, 878, 777, 363, 608, 230, 252, 165, 133, 30, 93, 26, 31, 4, 1, 3, 4, 91245, 26165, 35148, 24550, 30182, 17185, 24685, 12976, 16867, 12248, 12360, 7203, 11086, 5692, 6391, 5194, 5006, 2751, 3917, 2019, 2482, 1622, 1371, 812, 1233, 490, 495, 416, 360, 157, 282, 54, 78, 41, 29, 22, 49, 7, 4, 0, 6
Offset: 0
Examples
Triangle begins: n\k | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 ----+------------------------------------------------------------- 0 | 1; 1 | 1; 2 | 2; 3 | 6; 4 | 23, 1; 5 | 103, 10, 6, 1; 6 | 512, 77, 69, 30, 21, 5, 6; 7 | 2740, 548, 598, 330, 335, 123, 174, 58, 58, 37, 26, 3, 9, 1;
Links
- Peter Kagey, Rows n = 0..13, flattened, based on Anders Kaseorg's Rust program at the Code Golf Stack Exchange link.
- FindStat, St000750: The number of occurrences of the pattern 4213 in a permutation.
- Anders Kaseorg, Answer: Patterns in Permutations, Code Golf Stack Exchange.
- Rob Pratt, Greatest number of occurrences of the pattern 4213 in a permutation, Mathematics Stack Exchange.
- Eric Weisstein's World of Mathematics, Permutation Pattern
Programs
-
Mathematica
Join@@Array[Table[Length@Select[Permutations@Range@#,Length@Select[Subsets[#,{4}],Ordering@Ordering@#=={4,2,1,3}&]==k&],{k,0,Binomial[n+1,4]}]//.{a__,0}:>{a}&,8,0] (* Giorgos Kalogeropoulos, Mar 25 2021 *)
Comments