This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342844 #23 Dec 28 2021 11:41:18 %S A342844 27,34,38,46,49,54,56,57,58,68,69,74,76,78,86,87,94,98,203,207,209, %T A342844 247,249,253,259,267,289,299,308,323,329,334,338,343,346,356,358,370, %U A342844 374,376,377,380,386,388,394,398,403,406,407,429,430,434,437,446,447,454 %N A342844 Composite numbers not divisible by any of their nonzero digits. %H A342844 Harvey P. Dale, <a href="/A342844/b342844.txt">Table of n, a(n) for n = 1..1000</a> %p A342844 q:= n-> not isprime(n) and andmap(d-> irem(n, d)>0, %p A342844 {convert(n, base, 10)[]} minus {0}): %p A342844 select(q, [$1..500])[]; # _Alois P. Heinz_, Apr 01 2021 %t A342844 Select[Range@500,!PrimeQ@#&&Mod[#,DeleteCases[IntegerDigits@#,0]]~FreeQ~0&] (* _Giorgos Kalogeropoulos_, Apr 01 2021 *) %t A342844 Select[Range[500],CompositeQ[#]&&NoneTrue[#/(IntegerDigits[#]/.(0-> Nothing)),IntegerQ]&] (* _Harvey P. Dale_, Dec 28 2021 *) %o A342844 (PARI) isok(n)={if(isprime(n), 0, my(v=digits(n)); for(i=1, #v, if(v[i]<>0 && n%v[i]==0, return(0))); 1)} \\ _Andrew Howroyd_, Mar 25 2021 %o A342844 (Python) %o A342844 from sympy import isprime %o A342844 def ok(n): return not isprime(n) and all(n%int(d) for d in str(n) if d!='0') %o A342844 print(list(filter(ok, range(4, 455)))) # _Michael S. Branicky_, Apr 01 2021 %Y A342844 Cf. A038772, A316227. %K A342844 nonn,base %O A342844 1,1 %A A342844 _John Bibby_, Mar 24 2021