cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342873 Numbers whose distance to the nearest cube equals the distance to the nearest product of 3 consecutive integers (three-dimensional oblong).

This page as a plain text file.
%I A342873 #16 Mar 31 2021 20:29:53
%S A342873 0,7,16,62,92,213,276,508,616,995,1160,1722,1956,2737,3052,4088,4496,
%T A342873 5823,6336,7990,8620,10637,11396,13812,14712,17563,18616,21938,23156,
%U A342873 26985,28380,32752,34336,39287,41072,46638,48636,54853,57076,63980,66440,74067
%N A342873 Numbers whose distance to the nearest cube equals the distance to the nearest product of 3 consecutive integers (three-dimensional oblong).
%C A342873 That is, numbers k such that A074989(k) = A342872(k).
%C A342873 They form 2 partitions:
%C A342873 7, 62, 213, ... = 8*k^3 - k = k*A157914(k).
%C A342873 0, 16, 92,  ... = 8*k^3 + 6*k^2 + 2*k = 2*k*A033951(k).
%o A342873 (Python)
%o A342873 def aupto(limit):
%o A342873   cubes = [k**3 for k in range(int((limit+1)**1/3)+2)]
%o A342873   proms = [k*(k+1)*(k+2) for k in range(int((limit+1)**1/3)+1)]
%o A342873   A074989 = [min(abs(n-c) for c in cubes) for n in range(limit+1)]
%o A342873   A342872 = [min(abs(n-p) for p in proms) for n in range(limit+1)]
%o A342873   return [m for m in range(limit+1) if A074989[m] == A342872[m]]
%o A342873 print(aupto(10**4)) # _Michael S. Branicky_, Mar 28 2021
%Y A342873 Cf. A074989, A342872.
%Y A342873 Cf. A157914, A033951, A074378, A201053, A000578, A007531, A081134.
%K A342873 nonn,easy
%O A342873 1,2
%A A342873 _Lamine Ngom_, Mar 28 2021