This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342883 #23 Mar 31 2021 13:25:39 %S A342883 1,14,182,2366,30590,395654,5110070,66009062,852194966,11002765718, %T A342883 142019952830,1833202179662,23659632189662,305360673698150, %U A342883 3940760013826454,50857078231126286,656293571739976142,8469305943784113806,109290078485661202262,1410313416278288850230 %N A342883 Number of n-step self-avoiding walks on 7-D cubic lattice. %H A342883 N. Clisby, R. Liang, and G. Slade, <a href="http://dx.doi.org/10.1088/1751-8113/40/36/003">Self-avoiding walk enumeration via the lace expansion</a>, J. Phys. A: Math. Theor. vol. 40 (2007) pp. 10973-11017. Gives terms through a(24). %H A342883 Nathan Clisby, Richard Liang, and Gordon Slade, <a href="http://www.math.ubc.ca/~slade/se_tables.pdf">Self-avoiding walk enumeration via the lace expansion: tables</a> [Tables in humanly readable form]; <a href="/A342883/a342883.pdf">Local copy</a>. %H A342883 N. Clisby, R. Liang, and G. Slade, <a href="http://www.math.ubc.ca/~slade/lacecounts/">Self-avoiding walk enumeration via the lace expansion</a>. [Tables in machine-readable format on separate pages.] %Y A342883 For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see A001411, A001412, A010575, A010576, A010577, A342883, A342884, A342885, A342886, A342887, A342888. %K A342883 nonn %O A342883 0,2 %A A342883 _N. J. A. Sloane_, Mar 31 2021