This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342885 #5 Mar 31 2021 13:29:54 %S A342885 1,18,306,5202,88146,1493874,25300530,428518386,7256300850, %T A342885 122876680626,2080586127186,35229409431570,596495353475538, %U A342885 10099744526658546,171003188767881906,2895335387107970706,49021668492861718674,829999403731225961874 %N A342885 Number of n-step self-avoiding walks on 9-D cubic lattice. %H A342885 N. Clisby, R. Liang, and G. Slade, <a href="http://dx.doi.org/10.1088/1751-8113/40/36/003">Self-avoiding walk enumeration via the lace expansion</a>, J. Phys. A: Math. Theor. vol. 40 (2007) pp. 10973-11017. Gives terms through a(24). %H A342885 Nathan Clisby, Richard Liang, and Gordon Slade, <a href="http://www.math.ubc.ca/~slade/se_tables.pdf">Self-avoiding walk enumeration via the lace expansion: tables</a> [Tables in humanly readable form]; <a href="/A342883/a342883.pdf">Local copy</a>. %H A342885 N. Clisby, R. Liang, and G. Slade, <a href="http://www.math.ubc.ca/~slade/lacecounts/">Self-avoiding walk enumeration via the lace expansion</a>. [Tables in machine-readable format on separate pages.] %Y A342885 For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see A001411, A001412, A010575, A010576, A010577, A342883, A342884, A342885, A342886, A342887, A342888. %K A342885 nonn %O A342885 0,2 %A A342885 _N. J. A. Sloane_, Mar 31 2021