This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342886 #7 Mar 31 2021 13:34:12 %S A342886 1,20,380,7220,136820,2593100,49121660,930556460,17625825740, %T A342886 333857601020,6323384122580,119767717450100,2268399952520660, %U A342886 42963566150826380,813721674662589980,15411746407417290020,291893918240586194660,5528387235193561980740 %N A342886 Number of n-step self-avoiding walks on 10-D cubic lattice. %H A342886 N. Clisby, R. Liang, and G. Slade, <a href="http://dx.doi.org/10.1088/1751-8113/40/36/003">Self-avoiding walk enumeration via the lace expansion</a>, J. Phys. A: Math. Theor. vol. 40 (2007) pp. 10973-11017. Gives terms through a(24). %H A342886 Nathan Clisby, Richard Liang, and Gordon Slade, <a href="http://www.math.ubc.ca/~slade/se_tables.pdf">Self-avoiding walk enumeration via the lace expansion: tables</a> [Tables in humanly readable form]; <a href="/A342883/a342883.pdf">Local copy</a>. %H A342886 N. Clisby, R. Liang, and G. Slade, <a href="http://www.math.ubc.ca/~slade/lacecounts/">Self-avoiding walk enumeration via the lace expansion</a>. [Tables in machine-readable format on separate pages.] %Y A342886 For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see A001411, A001412, A010575, A010576, A010577, A342883, A342884, A342885, A342886, A342887, A342888. %K A342886 nonn %O A342886 0,2 %A A342886 _N. J. A. Sloane_, Mar 31 2021