This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342887 #7 Mar 31 2021 13:32:15 %S A342887 1,22,462,9702,203302,4260542,89253582,1869809502,39167457582, %T A342887 820458452462,17185914925542,359989506212182,7540511273930822, %U A342887 157947298263243742,3308420553034902382,69299392385043268822,1451565583054963249302,30404929596858248780502 %N A342887 Number of n-step self-avoiding walks on 11-D cubic lattice. %H A342887 N. Clisby, R. Liang, and G. Slade, <a href="http://dx.doi.org/10.1088/1751-8113/40/36/003">Self-avoiding walk enumeration via the lace expansion</a>, J. Phys. A: Math. Theor. vol. 40 (2007) pp. 10973-11017. Gives terms through a(24). %H A342887 Nathan Clisby, Richard Liang, and Gordon Slade, <a href="http://www.math.ubc.ca/~slade/se_tables.pdf">Self-avoiding walk enumeration via the lace expansion: tables</a> [Tables in humanly readable form]; <a href="/A342883/a342883.pdf">Local copy</a>. %H A342887 N. Clisby, R. Liang, and G. Slade, <a href="http://www.math.ubc.ca/~slade/lacecounts/">Self-avoiding walk enumeration via the lace expansion</a>. [Tables in machine-readable format on separate pages.] %Y A342887 For self-avoiding walks on the k-D cubic lattice for k = 2, ..., 12 see A001411, A001412, A010575, A010576, A010577, A342883, A342884, A342885, A342886, A342887, A342888. %K A342887 nonn %O A342887 0,2 %A A342887 _N. J. A. Sloane_, Mar 31 2021