This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342911 #8 Jul 30 2023 17:42:35 %S A342911 1,0,1,0,1,4,0,1,8,15,0,1,16,35,54,0,1,32,83,134,185,0,1,64,199,340, %T A342911 481,622,0,1,128,479,872,1265,1658,2051,0,1,256,1155,2254,3361,4468, %U A342911 5575,6682,0,1,512,2787,5854,8993,12132,15271,18410,21549 %N A342911 T(n, k) = Sum_{j=1..k} (1 + 2*cos(j*Pi/(k + 1)))^n for n > 0, T(0, 0) = 1. Triangle read by rows, T(n, k) for 0 <= k <= n. %e A342911 Triangle starts: %e A342911 [0] 1 %e A342911 [1] 0, 1 %e A342911 [2] 0, 1, 4 %e A342911 [3] 0, 1, 8, 15 %e A342911 [4] 0, 1, 16, 35, 54 %e A342911 [5] 0, 1, 32, 83, 134, 185 %e A342911 [6] 0, 1, 64, 199, 340, 481, 622 %e A342911 [7] 0, 1, 128, 479, 872, 1265, 1658, 2051 %e A342911 [8] 0, 1, 256, 1155, 2254, 3361, 4468, 5575, 6682 %e A342911 [9] 0, 1, 512, 2787, 5854, 8993, 12132, 15271, 18410, 21549 %p A342911 T := (n, k) -> `if`(n=0, 1, add((1+2*cos(j*Pi/(k+1)))^n, j=1..k)): %p A342911 seq(seq(simplify(T(n, k)), k=0..n), n=0..8); %Y A342911 Cf. A090326, A124696. %K A342911 nonn,tabl %O A342911 0,6 %A A342911 _Peter Luschny_, Mar 28 2021