This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342935 #62 Jun 13 2021 13:18:16 %S A342935 1,7,55,439,3433,27541,218773,1749223,13964245,111725197,893433661, %T A342935 7147232467,57169672861,457364647435,3658819119307,29270432746633, %U A342935 234161501271463,1873293863661469,14986321908515773,119890565631185995,959124025074311215,7672992332048493361 %N A342935 Number of ordered triples (x, y, z) with gcd(x, y, z) = 1 and 1 <= {x, y, z} <= 2^n. %H A342935 Chai Wah Wu, <a href="/A342935/b342935.txt">Table of n, a(n) for n = 0..53</a> (terms n = 0..32 from Karl-Heinz Hofmann) %F A342935 Lim_{n->infinity} a(n)/2^(3*n) = 1/zeta(3) = A088453 = 1/Apéry's constant. %F A342935 a(n) = A071778(2^n). %e A342935 For n=3, the size of the division cube matrix is 8 X 8 X 8: %e A342935 . %e A342935 : : : : : : : : : %e A342935 . %e A342935 z = 4 | 1 2 3 4 5 6 7 8 %e A342935 ------+---------------------- %e A342935 1 /| o o o o o o o o 8 %e A342935 2 / | o . o . o . o . 4 64 Sum (z = 1) %e A342935 3/ | o o o o o o o o 8 / %e A342935 / o . 4 48 Sum (z = 2) %e A342935 z = 5 |/1 2 3 4 5 6 7 8 o 8 / %e A342935 ------+---------------------- 4 60 Sum (z = 3) %e A342935 1 /| o o o o o o o o 8 8 / %e A342935 2 / | o o o o o o o o 8 4 / %e A342935 3/ | o o o o o o o o 8 --/ %e A342935 / o o 8 48 Sum (z = 4) %e A342935 z = 6 |/1 2 3 4 5 6 7 8 o 7 / %e A342935 ------+---------------------- 8 / %e A342935 1 /| o o o o o o o o 8 8 / %e A342935 2 / | o . o . o . o . 4 8 / %e A342935 3/ | o o o o o o o o 6 --/ %e A342935 / o . 4 63 Sum (z = 5) %e A342935 z = 7 |/1 2 3 4 5 6 7 8 o 8 / %e A342935 ------+---------------------- 3 / %e A342935 1 /| o o o o o o o o 8 8 / %e A342935 2 / | o o o o o o o o 8 4 / %e A342935 3/ | o o o o o o o o 8 --/ %e A342935 / o o 8 45 Sum (z = 6) %e A342935 z = 8 |/1 2 3 4 5 6 7 8 o 8 / %e A342935 ------+---------------------- 8 / %e A342935 1 | o o o o o o o o 8 7 / %e A342935 2 | o . o . o . o . 4 8 / %e A342935 3 | o o o o o o o o 8 --/ %e A342935 4 | o . o . o . o . 4 63 Sum (z = 7) %e A342935 5 | o o o o o o o o 8 / %e A342935 6 | o . o . o . o . 4 / %e A342935 7 | o o o o o o o o 8 / %e A342935 8 | o . o . o . o . 4 / %e A342935 --/ %e A342935 48 Sum (z = 8) %e A342935 | %e A342935 --- %e A342935 439 Cube Sum (z = 1..8) %t A342935 Array[Sum[MoebiusMu[k]*Floor[(2^#)/k]^3, {k, 2^# + 1}] &, 22, 0] (* _Michael De Vlieger_, Apr 05 2021 *) %o A342935 (Python) %o A342935 from labmath import mobius %o A342935 def A342935(n): return sum(mobius(k)*(2**n//k)**3 for k in range(1, 2**n+1)) %Y A342935 Cf. A088453, A002117, A018805, A342632, A342586, A071778, A342841. %K A342935 nonn %O A342935 0,2 %A A342935 _Karl-Heinz Hofmann_, Mar 29 2021 %E A342935 Edited by _N. J. A. Sloane_, Jun 13 2021