cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342935 Number of ordered triples (x, y, z) with gcd(x, y, z) = 1 and 1 <= {x, y, z} <= 2^n.

This page as a plain text file.
%I A342935 #62 Jun 13 2021 13:18:16
%S A342935 1,7,55,439,3433,27541,218773,1749223,13964245,111725197,893433661,
%T A342935 7147232467,57169672861,457364647435,3658819119307,29270432746633,
%U A342935 234161501271463,1873293863661469,14986321908515773,119890565631185995,959124025074311215,7672992332048493361
%N A342935 Number of ordered triples (x, y, z) with gcd(x, y, z) = 1 and 1 <= {x, y, z} <= 2^n.
%H A342935 Chai Wah Wu, <a href="/A342935/b342935.txt">Table of n, a(n) for n = 0..53</a> (terms n = 0..32 from Karl-Heinz Hofmann)
%F A342935 Lim_{n->infinity} a(n)/2^(3*n) = 1/zeta(3) = A088453 = 1/Apéry's constant.
%F A342935 a(n) = A071778(2^n).
%e A342935 For n=3, the size of the division cube matrix is 8 X 8 X 8:
%e A342935 .
%e A342935                             :   : : : : : : : :
%e A342935 .
%e A342935                         z = 4 | 1 2 3 4 5 6 7 8
%e A342935                         ------+----------------------
%e A342935                           1  /| o o o o o o o o    8
%e A342935                           2 / | o . o . o . o .    4      64 Sum (z = 1)
%e A342935                           3/  | o o o o o o o o    8      /
%e A342935                           /                 o .    4    48  Sum (z = 2)
%e A342935                   z = 5 |/1 2 3 4 5 6 7 8     o    8    /
%e A342935                   ------+----------------------    4  60  Sum (z = 3)
%e A342935                     1  /| o o o o o o o o    8     8  /
%e A342935                     2 / | o o o o o o o o    8     4 /
%e A342935                     3/  | o o o o o o o o    8    --/
%e A342935                     /                 o o    8    48  Sum (z = 4)
%e A342935             z = 6 |/1 2 3 4 5 6 7 8     o    7    /
%e A342935             ------+----------------------    8   /
%e A342935               1  /| o o o o o o o o    8     8  /
%e A342935               2 / | o . o . o . o .    4     8 /
%e A342935               3/  | o o o o o o o o    6    --/
%e A342935               /                 o .    4    63  Sum (z = 5)
%e A342935       z = 7 |/1 2 3 4 5 6 7 8     o    8    /
%e A342935       ------+----------------------    3   /
%e A342935         1  /| o o o o o o o o    8     8  /
%e A342935         2 / | o o o o o o o o    8     4 /
%e A342935         3/  | o o o o o o o o    8    --/
%e A342935         /                 o o    8    45  Sum (z = 6)
%e A342935 z = 8 |/1 2 3 4 5 6 7 8     o    8    /
%e A342935 ------+----------------------    8   /
%e A342935   1   | o o o o o o o o    8     7  /
%e A342935   2   | o . o . o . o .    4     8 /
%e A342935   3   | o o o o o o o o    8    --/
%e A342935   4   | o . o . o . o .    4    63  Sum (z = 7)
%e A342935   5   | o o o o o o o o    8    /
%e A342935   6   | o . o . o . o .    4   /
%e A342935   7   | o o o o o o o o    8  /
%e A342935   8   | o . o . o . o .    4 /
%e A342935                           --/
%e A342935                           48  Sum (z = 8)
%e A342935                            |
%e A342935                          ---
%e A342935                          439  Cube Sum (z = 1..8)
%t A342935 Array[Sum[MoebiusMu[k]*Floor[(2^#)/k]^3, {k, 2^# + 1}] &, 22, 0] (* _Michael De Vlieger_, Apr 05 2021 *)
%o A342935 (Python)
%o A342935 from labmath import mobius
%o A342935 def A342935(n): return sum(mobius(k)*(2**n//k)**3 for k in range(1, 2**n+1))
%Y A342935 Cf. A088453, A002117, A018805, A342632, A342586, A071778, A342841.
%K A342935 nonn
%O A342935 0,2
%A A342935 _Karl-Heinz Hofmann_, Mar 29 2021
%E A342935 Edited by _N. J. A. Sloane_, Jun 13 2021