This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342940 #9 Apr 01 2021 14:56:27 %S A342940 2,3,4,4,6,8,5,8,11,14,6,10,14,18,22,7,12,17,22,27,32,8,14,20,26,32, %T A342940 38,44,9,16,23,30,37,44,51,58,10,18,26,34,42,50,58,66,74,11,20,29,38, %U A342940 47,56,65,74,83,92,12,22,32,42,52,62,72,82,92,102,112,13,24,35,46,57,68,79,90,101,112,123,134 %N A342940 Triangle read by rows: T(n, k) is the Skolem number of the parallelogram graph P_{n, k}, with 1 < k <= n. %C A342940 For the meaning of Skolem number of a graph, see Definitions 1.4 and 1.5 in Carrigan and Green. %H A342940 Braxton Carrigan and Garrett Green, <a href="https://research.library.kutztown.edu/contact/vol2/iss1/2/">Skolem Number of Subgraphs on the Triangular Lattice</a>, Communications on Number Theory and Combinatorial Theory 2 (2021), Article 2. %F A342940 O.g.f.: (4 - 6*y - x*(5 - 8*y))/((1 - x)^2*(1 - y)^2). %F A342940 E.g.f.: exp(x+y)*(4 - x*(1 - y) - 2*y). %F A342940 T(n, k) = k*n - 2*k - n + 4 (see Theorem 3.3 in Carrigan and Green). %F A342940 Sum_{k=2..n} T(n, k) = A229183(n-1). %F A342940 T(n, n) = A014206(n-2). %e A342940 The triangle T(n, k) begins: %e A342940 n\k| 2 3 4 5 6 7 %e A342940 ---+------------------------ %e A342940 2 | 2 %e A342940 3 | 3 4 %e A342940 4 | 4 6 8 %e A342940 5 | 5 8 11 14 %e A342940 6 | 6 10 14 18 22 %e A342940 7 | 7 12 17 22 27 32 %e A342940 ... %t A342940 T[n_,k_]:=k*n-2k-n+4; Table[T[n,k],{n,2,13},{k,2,n}]//Flatten %Y A342940 Cf. A014206, A229183, A342938, A342939. %Y A342940 For n > 1, 3*A002061(n) gives the Skolem number of the hexagonal grid graph H_n. %K A342940 nonn,easy,tabl %O A342940 2,1 %A A342940 _Stefano Spezia_, Mar 30 2021