This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342945 #16 May 22 2021 04:35:07 %S A342945 1,2,11,21,33,111,211,331,403,1065,1111,1200,2065,2111,2200,3050,3265, %T A342945 3311,4031,4122,4130,4543,5143,10651,11111,11650,12001,12010,12100, %U A342945 13000,15330,20651,21111,21650,22001,22010,22100,23000,25330,30200,30501,30510,31500 %N A342945 Numbers m such that d(1)^1 + d(2)^2 + ... + d(p)^k = d(1)! + d(2)! + ... + d(k)!, where d(i), i=1..k, are the digits of m. %e A342945 3265 is in the sequence because 3^1 + 2^2 + 6^3 + 5^4 = 3! + 2! + 6! + 5! = 848. %t A342945 Select[Range@40000,Total[(a=IntegerDigits@#)^Range@Length@a]==Total[a!]&] (* _Giorgos Kalogeropoulos_, Mar 30 2021 *) %o A342945 (Python) %o A342945 from math import factorial %o A342945 def digfac(s): return sum(factorial(int(d)) for d in s) %o A342945 def digpow(s): return sum(int(d)**i for i, d in enumerate(s, start=1)) %o A342945 def aupto(limit): %o A342945 alst = [] %o A342945 for k in range(1, limit+1): %o A342945 s = str(k) %o A342945 if digpow(s) == digfac(s): alst.append(k) %o A342945 return alst %o A342945 print(aupto(32000)) # _Michael S. Branicky_, Mar 30 2021 %Y A342945 Cf. A002275, A342944, A342826, A178354. %K A342945 nonn,base %O A342945 1,2 %A A342945 _Carole Dubois_, Mar 30 2021