This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342948 #10 Apr 16 2021 00:12:20 %S A342948 1,8,9,6,4,2,3,12,13,16,7,24,5,19,10,15,26,34,18,14,11,21,30,43,37,20, %T A342948 48,25,22,17,31,39,38,29,46,23,58,32,49,42,41,35,52,45,27,53,33,28,40, %U A342948 54,51,63,60,73,70,84,57,50,67,59,81,47,93,56,106,69,123 %N A342948 Squares visited by either knight when a white knight and a black knight are moving on a diagonally numbered board, always to the lowest available unvisited square; white moves first. %C A342948 Board is numbered as follows: %C A342948 1 2 4 7 11 16 . %C A342948 3 5 8 12 17 . %C A342948 6 9 13 18 . %C A342948 10 14 19 . %C A342948 15 20 . %C A342948 21 . %C A342948 . %C A342948 Both knights start on square 1, white moves to the lowest unvisited square (8), black then moves to the lowest unvisited square (9) and so on... %C A342948 This sequence is finite, on the 583rd move or the white knight's 292nd step, square 406 is visited, after which black wins and the game is over. %o A342948 (Python) %o A342948 KM=[(2, 1), (1, 2), (-1, 2), (-2, 1), (-2, -1), (-1, -2), (1, -2), (2, -1)] %o A342948 def idx(loc): i, j = loc; return (i+j-1)*(i+j-2)//2 + j %o A342948 def next_move(loc, visited): %o A342948 i, j = loc; moves = [(i+io, j+jo) for io, jo in KM if i+io>0 and j+jo>0] %o A342948 available = [m for m in moves if m not in visited] %o A342948 return min(available, default=None, key=lambda x: idx(x)) %o A342948 def aseq(): %o A342948 loc, s, turn, alst = [(1, 1), (1, 1)], {(1, 1)}, 0, [1] %o A342948 m = next_move(loc[turn], s) %o A342948 while m != None: %o A342948 loc[turn], s, turn, alst = m, s|{m}, 1 - turn, alst + [idx(m)] %o A342948 m = next_move(loc[turn], s) %o A342948 return alst %o A342948 A342948_lst = aseq() # _Michael S. Branicky_, Mar 30 2021 %Y A342948 Cf. A338288, A338289, A338290, A342946, A342947. %K A342948 nonn,fini %O A342948 1,2 %A A342948 _Andrew Smith_, Mar 30 2021