This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342950 #34 Sep 18 2024 05:53:13 %S A342950 1,2,3,4,5,6,7,8,9,12,14,15,16,18,21,24,25,27,28,32,35,36,42,45,48,49, %T A342950 54,56,63,64,72,75,81,84,96,98,105,108,112,125,126,128,135,144,147, %U A342950 162,168,175,189,192,196,216,224,225,243,245,252,256,288,294,315,324 %N A342950 7-smooth numbers not divisible by 10: positive numbers whose prime divisors are all <= 7 but do not contain both 2 and 5. %H A342950 David A. Corneth, <a href="/A342950/b342950.txt">Table of n, a(n) for n = 1..10195</a> %F A342950 Sum_{n>=1} 1/a(n) = 63/16. - _Amiram Eldar_, Apr 01 2021 %e A342950 12 is in the sequence as all of its prime divisors are <= 7 and 12 is not divisible by 10. %t A342950 Select[Range@500,Max[First/@FactorInteger@#]<=7&&Mod[#,10]!=0&] (* _Giorgos Kalogeropoulos_, Mar 30 2021 *) %o A342950 (PARI) is(n) = if(n%10 == 0, return(0)); forprime(p = 2, 7, n/=p^valuation(n, p)); n==1 %o A342950 (Python) %o A342950 A342950_list, n = [], 1 %o A342950 while n < 10**9: %o A342950 if n % 10: %o A342950 m = n %o A342950 for p in (2,3,5,7): %o A342950 q, r = divmod(m,p) %o A342950 while r == 0: %o A342950 m = q %o A342950 q, r = divmod(m,p) %o A342950 if m == 1: %o A342950 A342950_list.append(n) %o A342950 n += 1 # _Chai Wah Wu_, Mar 31 2021 %o A342950 (Python) %o A342950 from sympy import integer_log %o A342950 def A342950(n): %o A342950 def bisection(f,kmin=0,kmax=1): %o A342950 while f(kmax) > kmax: kmax <<= 1 %o A342950 while kmax-kmin > 1: %o A342950 kmid = kmax+kmin>>1 %o A342950 if f(kmid) <= kmid: %o A342950 kmax = kmid %o A342950 else: %o A342950 kmin = kmid %o A342950 return kmax %o A342950 def f(x): %o A342950 c = n+x %o A342950 for i in range(integer_log(x,7)[0]+1): %o A342950 for j in range(integer_log(m:=x//7**i,3)[0]+1): %o A342950 c -= (k:=m//3**j).bit_length()+integer_log(k,5)[0] %o A342950 return c %o A342950 return bisection(f,n,n) # _Chai Wah Wu_, Sep 17 2024 %o A342950 (Python) # faster for initial segment of sequence %o A342950 import heapq %o A342950 from itertools import islice %o A342950 def A342950gen(): # generator of terms %o A342950 v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5, 7] %o A342950 while True: %o A342950 v = heapq.heappop(h) %o A342950 if v != oldv: %o A342950 yield v %o A342950 oldv = v %o A342950 for p in psmooth_primes: %o A342950 if not (p==2 and v%5==0) and not (p==5 and v&1==0): %o A342950 heapq.heappush(h, v*p) %o A342950 print(list(islice(A342950gen(), 65))) # _Michael S. Branicky_, Sep 17 2024 %Y A342950 Union of A108319 and A108347. %Y A342950 Intersection of A002473 and A067251. %K A342950 nonn %O A342950 1,2 %A A342950 _David A. Corneth_, Mar 30 2021