This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342956 #15 Mar 31 2021 12:04:11 %S A342956 0,1,1,2,1,1,1,2,2,1,1,1,1,2,3,3,1,3,1,2,2,1,1,2,2,2,2,1,1,2,1,2,2,1, %T A342956 3,2,1,2,4,1,1,3,1,2,1,2,1,1,2,3,3,1,1,1,4,1,2,1,1,3,1,2,1,3,3,4,1,2, %U A342956 2,2,1,3,1,2,1,1,3,3,1,1,3,1,1,2,2,3,5,1,1,1,3,3,2,2,4,1,1,4,1 %N A342956 a(n) = A001222(A001414(n)). %C A342956 a(n) is the number of prime divisors of the sum of prime divisors of n, counting multiplicity in both cases. %H A342956 Robert Israel, <a href="/A342956/b342956.txt">Table of n, a(n) for n = 1..10000</a> %e A342956 a(16) = 3 because A001414(16) = 2+2+2+2 = 8 and A001222(8) = A001222(2^3) = 3. %p A342956 f:= proc(n) local t; numtheory:-bigomega(add(t[1]*t[2],t=ifactors(n)[2])) end proc: %p A342956 map(f, [$1..100]); %t A342956 Array[PrimeOmega[Plus@@Times@@@FactorInteger@#]&,100] (* _Giorgos Kalogeropoulos_, Mar 31 2021 *) %o A342956 (Python) %o A342956 from sympy import factorint %o A342956 def A342956(n): return sum(factorint(sum(p*e for p, e in factorint(n).items())).values()) if n > 1 else 0 # _Chai Wah Wu_, Mar 31 2021 %Y A342956 Cf. A001222, A001414, A342957. %K A342956 nonn %O A342956 1,4 %A A342956 _J. M. Bergot_ and _Robert Israel_, Mar 30 2021