This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342959 #16 Aug 09 2022 11:04:55 %S A342959 1,6,62,618,6180,61804,618034,6180340,61803399,618033989,6180339888, %T A342959 61803398875,618033988750,6180339887499,61803398874990, %U A342959 618033988749895,6180339887498949,61803398874989485,618033988749894848,6180339887498948482,61803398874989484821 %N A342959 Number of 1's within a sample word of length 10^n of the infinite Fibonacci word A003842 where n is the sequence index. %C A342959 The proportion of 1's within the sample word length tends to 1/phi = 0.6180339887... (A094214) as the sample size increases to infinity. %H A342959 Rémy Sigrist, <a href="/A342959/b342959.txt">Table of n, a(n) for n = 0..1000</a> %H A342959 Rémy Sigrist, <a href="/A342959/a342959.gp.txt">PARI program for A342959</a> %F A342959 a(n) = A005206(10^n). - _Rémy Sigrist_, Apr 05 2021 %e A342959 a(1) = 6 because the first sample of the infinite Fibonacci word has a word length of 10. The word sample is (1, 2, 1, 1, 2, 1, 2, 1, 1, 2) and #1's = 6. %t A342959 set=Nest[Flatten[# /. {1 -> {1, 2}, 2 -> {1}}] &, {1}, 40]; Table[First@Counts@set[[1;;10^n]], {n, 1, 8}] %o A342959 (PARI) See Links section. %o A342959 (PARI) my(s=quadgen(5)-1); a(n) = floor((10^n+1)*s); \\ _Kevin Ryde_, Apr 09 2021 %o A342959 (Python) %o A342959 from math import isqrt %o A342959 def A342959(n): return ((m:=10**n+1)+isqrt(5*m**2)>>1)-m # _Chai Wah Wu_, Aug 09 2022 %Y A342959 Cf. A003842, A094214, A005614, A005206. %K A342959 nonn %O A342959 0,2 %A A342959 _Frank M Jackson_, Mar 31 2021 %E A342959 a(0) = 1 prepended and more terms from _Rémy Sigrist_, Apr 05 2021