This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342960 #11 Apr 09 2021 09:34:31 %S A342960 38377,70957,106867,278177,278393,380377,432199,435763,526397,1093159, %T A342960 2025577,2761147,3068119,3656129,3672659,5649079,6863173,7366453, %U A342960 8083937,9015863,9346507,9497353,14198467,15099901,15467423,15479273,16020607,16437427,17602547,18804173,20020019,20794141,22866121 %N A342960 Primes p such that p+A003132(p),(p+A003132(p))+A003132(p+A003132(p)), p-A003132(p), and (p-A003132(p))-A003132(p-A003132(p)) are prime. %C A342960 The number of digits of p that are not divisible by 3 is divisible by 3. %H A342960 Robert Israel, <a href="/A342960/b342960.txt">Table of n, a(n) for n = 1..250</a> %e A342960 a(3) = 106867 is a term because 106867, 106867+A003132(106867) = 107053, 107053+A003132(107053) = 107137, 106867-A003132(106867) = 106681, and 106681-A003132(106681) = 106543 are all prime. %p A342960 filter:= proc(n) local t,x,d; %p A342960 if not isprime(n) then return false fi; %p A342960 d:= add(t^2, t=convert(n,base,10)); %p A342960 x:= n+d; %p A342960 if not isprime(x) then return false fi; %p A342960 if not isprime(x+add(t^2,t=convert(x,base,10))) then return false fi; %p A342960 x:= n-d; %p A342960 isprime(x) and isprime(x-add(t^2,t=convert(x,base,10))) %p A342960 end proc: %p A342960 select(filter, [seq(i,i=3..3*10^7,2)]); %Y A342960 Contained in A179549 and A179550. %Y A342960 Cf. A003132. %K A342960 nonn,base %O A342960 1,1 %A A342960 _J. M. Bergot_ and _Robert Israel_, Mar 31 2021