cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342969 Numbers m such that both m^2-1 and m^2 are refactorable numbers (A033950).

Original entry on oeis.org

3, 39, 225, 249, 321, 447, 471, 519, 681, 831, 921, 993, 1119, 1191, 1473, 1641, 1671, 1857, 1929, 1983, 2361, 2391, 2463, 2625, 2631, 2913, 3321, 3369, 3561, 3591, 3777, 3807, 3831, 3903, 4119, 4281, 4287, 4359, 4545, 4569, 4791, 5001, 5025, 5079, 5241, 5481
Offset: 1

Views

Author

Jianing Song, Apr 01 2021

Keywords

Comments

Numbers m such that m^2-1 is divisible by d(m^2-1) and m^2 is divisible by d(m^2), d = A000005.
Zelinsky (2002, Theorem 59, p. 15) proved that if k > 1, k and k+1 are both refactorable numbers, then k is even. Such k must be of the form m^2-1 for some odd m.
The smallest term not divisible by 3 is a(66) = 9025.
For the first terms we have d(a(n)^2-1) > d(a(n)^2). But this is not always the case. The smallest counterexample is a(30) = 3591, where d(3591^2-1) = 40 and d(3591^2) = 63. The terms m such that d(m^2-1) < d(m^2) are listed in A342970. [Note that d(m^2-1) = d(m^2) is impossible since d(m^2-1) is even and d(m^2) is odd. - Jianing Song, Nov 21 2021]

Examples

			39 is a term since 39^2-1 = 1520 is divisible by d(1520) = 20 and 39^2 = 1521 is divisible by d(1521) = 9.
		

Crossrefs

Programs

  • Mathematica
    refQ[n_] := Divisible[n, DivisorSigma[0, n]]; Select[Range[6000], And @@ refQ /@ (#^2 - {1, 0}) &] (* Amiram Eldar, Feb 03 2025 *)
  • PARI
    isrefac(n) = ! (n % numdiv(n));
    isA342969(n) = (n>1) && isrefac(n^2-1) && isrefac(n^2)

Formula

A036898(2*n+1) = A114617(n+1) = a(n)^2 - 1; A036898(2*n+2) = A114617(n+1) + 1 = a(n)^2.