This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342974 #17 Jun 05 2021 17:26:05 %S A342974 31,43,109,127,151,157,223,229,241,251,277,283,307,331,397,431,433, %T A342974 439,457,499,571,601,631,641,643,673,683,691,727,733,739,811,911,919, %U A342974 953,971,997,1013,1021,1051,1069,1093,1103,1163,1181,1321,1327,1399,1423,1429 %N A342974 Primes p such that the order of 2 modulo p is not divisible by the largest odd divisor of p - 1. %C A342974 Every prime factor of a composite Fermat number belongs to this sequence. %C A342974 If a prime of the form 3*2^k + 1 belongs to this sequence, then k is in A204620 (see Golomb). %C A342974 Primes p such that A014664(primepi(p)) is not divisible by A057023(primepi(p)). - _Michel Marcus_, Apr 26 2021 %H A342974 Solomon W. Golomb, <a href="https://doi.org/10.1090/S0025-5718-1976-0404129-8">Properties of the sequence 3.2^n+1</a>, Math. Comp., 30 (1976), 657-663. %t A342974 Select[Prime@Range@300,Mod[MultiplicativeOrder[2,#],Max@Select[Divisors[#-1],OddQ]]!=0&] (* _Giorgos Kalogeropoulos_, Apr 02 2021 *) %o A342974 (PARI) forprime(p=3, 1429, if(Mod(znorder(Mod(2, p)), (p-1)>>valuation(p-1, 2)), print1(p, ", "))); %Y A342974 Cf. A014664, A023394, A057023, A204620, A226366, A280003, A280004. %K A342974 nonn %O A342974 1,1 %A A342974 _Arkadiusz Wesolowski_, Apr 01 2021