This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342982 #19 Apr 30 2021 23:05:05 %S A342982 1,1,1,2,6,2,5,30,30,5,14,140,280,140,14,42,630,2100,2100,630,42,132, %T A342982 2772,13860,23100,13860,2772,132,429,12012,84084,210210,210210,84084, %U A342982 12012,429,1430,51480,480480,1681680,2522520,1681680,480480,51480,1430 %N A342982 Triangle read by rows: T(n,k) is the number of tree-rooted planar maps with n edges and k+1 faces, n >= 0, k = 0..n. %C A342982 The number of vertices is n + 1 - k. %C A342982 A tree-rooted planar map is a planar map with a distinguished spanning tree. %H A342982 Andrew Howroyd, <a href="/A342982/b342982.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %H A342982 R. C. Mullin, <a href="https://doi.org/10.4153/CJM-1967-010-x">On the Enumeration of Tree-Rooted Maps</a>, Canadian Journal of Mathematics, Volume 19, 1967, pp. 174-183. %F A342982 T(n,k) = (2*n)!/(k!*(k+1)!*(n-k)!*(n-k+1)!). %F A342982 T(n,n-k) = T(n,k). %F A342982 T(n, floor(n/2)) = A215288(n). %F A342982 T(n,k) = A000108(n) * A001263(n+1,k+1). - _Werner Schulte_, Apr 04 2021 %e A342982 Triangle begins: %e A342982 1; %e A342982 1, 1; %e A342982 2, 6, 2; %e A342982 5, 30, 30, 5; %e A342982 14, 140, 280, 140, 14; %e A342982 42, 630, 2100, 2100, 630, 42; %e A342982 132, 2772, 13860, 23100, 13860, 2772, 132; %e A342982 429, 12012, 84084, 210210, 210210, 84084, 12012, 429; %e A342982 ... %t A342982 Table[(2 n)!/(k!*(k + 1)!*(n - k)!*(n - k + 1)!), {n, 0, 8}, {k, 0, n}] // Flatten (* _Michael De Vlieger_, Apr 06 2021 *) %o A342982 (PARI) %o A342982 T(n,k) = {(2*n)!/(k!*(k+1)!*(n-k)!*(n-k+1)!)} %o A342982 { for(n=0, 10, print(vector(n+1, k, T(n,k-1)))) } %Y A342982 Columns k=0..2 are A000108, A002457, 2*A002803. %Y A342982 Row sums are A005568. %Y A342982 Central coefficients are A342983. %Y A342982 Cf. A001263, A215288, A269920, A342984. %K A342982 nonn,tabl %O A342982 0,4 %A A342982 _Andrew Howroyd_, Apr 03 2021