This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342985 #17 May 30 2025 02:14:08 %S A342985 1,0,0,0,2,0,0,3,3,0,0,4,36,4,0,0,5,135,135,5,0,0,6,360,1368,360,6,0, %T A342985 0,7,798,7350,7350,798,7,0,0,8,1568,28400,73700,28400,1568,8,0,0,9, %U A342985 2826,89073,474588,474588,89073,2826,9,0,0,10,4770,241220,2292790,4818092,2292790,241220,4770,10,0 %N A342985 Triangle read by rows: T(n,k) is the number of tree-rooted loopless planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1. %C A342985 The number of vertices is n + 2 - k. %C A342985 For k >= 2, column k without the initial zero term is a polynomial of degree 4*(k-2)+1. %H A342985 Andrew Howroyd, <a href="/A342985/b342985.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %H A342985 T. R. S. Walsh and A. B. Lehman, <a href="http://dx.doi.org/10.1016/0095-8956(75)90050-7">Counting rooted maps by genus. III: Nonseparable maps</a>, J. Combinatorial Theory Ser. B 18 (1975), 222-259, Table VIIIa. %F A342985 T(n,n+2-k) = T(n,k). %F A342985 G.f.: A(x,y) satisfies A(x,y) = G(x*A(x,y)^2,y) where G(x,y) + x*(1+y) is the g.f. of A342984. %e A342985 Triangle begins: %e A342985 1; %e A342985 0, 0; %e A342985 0, 2, 0; %e A342985 0, 3, 3, 0; %e A342985 0, 4, 36, 4, 0; %e A342985 0, 5, 135, 135, 5, 0; %e A342985 0, 6, 360, 1368, 360, 6, 0; %e A342985 0, 7, 798, 7350, 7350, 798, 7, 0; %e A342985 0, 8, 1568, 28400, 73700, 28400, 1568, 8, 0; %e A342985 ... %o A342985 (PARI) \\ here G(n,y) is A342984 as g.f. %o A342985 F(n,y)={sum(n=0, n, x^n*sum(i=0, n, my(j=n-i); y^i*(2*i+2*j)!/(i!*(i+1)!*j!*(j+1)!))) + O(x*x^n)} %o A342985 G(n,y)={my(g=F(n,y)); subst(g, x, serreverse(x*g^2))} %o A342985 H(n)={my(g=G(n, y)-x*(1+y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))} %o A342985 { my(T=H(8)); for(n=1, #T, print(T[n])) } %Y A342985 Columns and diagonals 3..5 are A006428, A006429, A006430. %Y A342985 Row sums are A342986. %Y A342985 Cf. A342980, A342982, A342984, A342987. %K A342985 nonn,tabl %O A342985 0,5 %A A342985 _Andrew Howroyd_, Apr 03 2021