This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342987 #17 May 30 2025 02:15:04 %S A342987 1,0,1,0,2,2,0,3,15,5,0,4,60,84,14,0,5,175,650,420,42,0,6,420,3324, %T A342987 5352,1980,132,0,7,882,13020,42469,37681,9009,429,0,8,1680,42240, %U A342987 246540,429120,239752,40040,1430,0,9,2970,118998,1142622,3462354,3711027,1421226,175032,4862 %N A342987 Triangle read by rows: T(n,k) is the number of tree-rooted planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1. %C A342987 The number of vertices is n + 2 - k. %C A342987 For k >= 2, column k is a polynomial of degree 4*(k-2)+1. %H A342987 Andrew Howroyd, <a href="/A342987/b342987.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %H A342987 T. R. S. Walsh and A. B. Lehman, <a href="http://dx.doi.org/10.1016/0095-8956(75)90050-7">Counting rooted maps by genus. III: Nonseparable maps</a>, J. Combinatorial Theory Ser. B 18 (1975), 222-259, Table VIIIb. %F A342987 G.f.: A(x,y) satisfies A(x,y) = G(x*A(x,y)^2,y) where G(x,y) + x is the g.f. of A342984. %e A342987 Triangle begins: %e A342987 1; %e A342987 0, 1; %e A342987 0, 2, 2; %e A342987 0, 3, 15, 5; %e A342987 0, 4, 60, 84, 14; %e A342987 0, 5, 175, 650, 420, 42; %e A342987 0, 6, 420, 3324, 5352, 1980, 132; %e A342987 0, 7, 882, 13020, 42469, 37681, 9009, 429; %e A342987 0, 8, 1680, 42240, 246540, 429120, 239752, 40040, 1430; %e A342987 ... %o A342987 (PARI) \\ here G(n,y) is A342984 as g.f. %o A342987 F(n,y)={sum(n=0, n, x^n*sum(i=0, n, my(j=n-i); y^i*(2*i+2*j)!/(i!*(i+1)!*j!*(j+1)!))) + O(x*x^n)} %o A342987 G(n,y)={my(g=F(n,y)); subst(g, x, serreverse(x*g^2))} %o A342987 H(n)={my(g=G(n,y)-x, v=Vec(sqrt(serreverse(x/g^2)/x))); [Vecrev(t) | t<-v]} %o A342987 { my(T=H(8)); for(n=1, #T, print(T[n])) } %Y A342987 Columns k=1..4 are A000007, A000027, A006470, A006471. %Y A342987 Diagonals are A000108, A002740, A006432, A006433. %Y A342987 Row sums are A342988. %Y A342987 Cf. A342981, A342982, A342984, A342985. %K A342987 nonn,tabl %O A342987 0,5 %A A342987 _Andrew Howroyd_, Apr 03 2021