This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A342989 #16 Jan 02 2022 16:09:19 %S A342989 1,4,4,10,39,10,20,190,190,20,35,651,1568,651,35,56,1792,8344,8344, %T A342989 1792,56,84,4242,33580,64667,33580,4242,84,120,8988,111100,361884, %U A342989 361884,111100,8988,120,165,17490,317680,1607125,2713561,1607125,317680,17490,165 %N A342989 Triangle read by rows: T(n,k) is the number of nonseparable rooted toroidal maps with n edges and k faces, n >= 2, k = 1..n-1. %C A342989 The number of vertices is n - k. %C A342989 Column k is a polynomial of degree 3*k. This is because adding a face can increase the number of vertices whose degree is greater than two by at most two. %H A342989 Andrew Howroyd, <a href="/A342989/b342989.txt">Table of n, a(n) for n = 2..1276</a> (first 50 rows) %H A342989 T. R. S. Walsh and A. B. Lehman, <a href="http://dx.doi.org/10.1016/0095-8956(75)90050-7">Counting rooted maps by genus. III: Nonseparable maps</a>, J. Combinatorial Theory Ser. B 18 (1975), 222-259, Table II. %F A342989 T(n,n-k) = T(n,k). %e A342989 Triangle begins: %e A342989 1; %e A342989 4, 4; %e A342989 10, 39, 10; %e A342989 20, 190, 190, 20; %e A342989 35, 651, 1568, 651, 35; %e A342989 56, 1792, 8344, 8344, 1792, 56; %e A342989 84, 4242, 33580, 64667, 33580, 4242, 84; %e A342989 120, 8988, 111100, 361884, 361884, 111100, 8988, 120; %e A342989 ... %o A342989 (PARI) %o A342989 MQ(n,g,x=1)={ \\ after Quadric in A269921. %o A342989 my(Q=matrix(n+1,g+1)); Q[1,1]=x; %o A342989 for(n=1, n, for(g=0, min(n\2,g), %o A342989 my(t = (1+x)*(2*n-1)/3 * Q[n, 1+g] %o A342989 + if(g && n>1, (2*n-3)*(2*n-2)*(2*n-1)/12 * Q[n-1, g]) %o A342989 + sum(k = 1, n-1, sum(i = 0, g, (2*k-1) * (2*(n-k)-1) * Q[k, 1+i] * Q[n-k, 1+g-i]))/2); %o A342989 Q[1+n, 1+g] = t * 6/(n+1); )); %o A342989 Q %o A342989 } %o A342989 F(n,m,y,z)={my(Q=MQ(n,m,z)); sum(n=0, n, x^n*Ser(Q[1+n,]/z, y)) + O(x*x^n)} %o A342989 H(n,g=1)={my(p=F(n,g,'y,'z), v=Vec(polcoef(subst(p, x, serreverse(x*p^2)), g, 'y))); vector(#v, n, Vecrev(v[n], n))} %o A342989 { my(T=H(10)); for(n=1, #T, print(T[n])) } %Y A342989 Columns 1..4 are A000292, A006408, A006409, A006410. %Y A342989 Row sums are A343089. %Y A342989 Cf. A082680 (planar case), A269921 (rooted toroidal maps), A343090, A343092. %K A342989 nonn,tabl %O A342989 2,2 %A A342989 _Andrew Howroyd_, Apr 04 2021