cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342997 Maximum number of diagonal transversals in a cyclic diagonal Latin square of order 2n+1.

This page as a plain text file.
%I A342997 #23 May 05 2021 13:58:52
%S A342997 1,0,5,27,0,4665,131106,0,204995269,11254190082
%N A342997 Maximum number of diagonal transversals in a cyclic diagonal Latin square of order 2n+1.
%C A342997 A cyclic Latin square is a Latin square in which row i is obtained by cyclically shifting row i-1 by d places (see A338562, A123565 and A341585).
%C A342997 Cyclic diagonal Latin squares do not exist for even n.
%C A342997 All cyclic diagonal Latin squares are diagonal Latin squares, so a((n-1)/2) <= A287648(n).
%C A342997 All diagonal transversals are transversals, so a(n) <= A006717(n).
%C A342997 A342998 <= a(n).
%H A342997 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_1412">Enumerating the diagonal transversals for cyclic diagonal Latin squares of orders 1-19</a> (in Russian).
%H A342997 Eduard I. Vatutin, <a href="/A342997/a342997.txt">Proving list (best known examples)</a>.
%H A342997 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.
%e A342997 For n=2 one of the best cyclic diagonal Latin squares of order 5
%e A342997   0 1 2 3 4
%e A342997   2 3 4 0 1
%e A342997   4 0 1 2 3
%e A342997   1 2 3 4 0
%e A342997   3 4 0 1 2
%e A342997 has a(2)=5 diagonal transversals:
%e A342997   0 . . . .   . 1 . . .   . . 2 . .   . . . 3 .   . . . . 4
%e A342997   . . 4 . .   . . . 0 .   . . . . 1   2 . . . .   . 3 . . .
%e A342997   . . . . 3   4 . . . .   . 0 . . .   . . 1 . .   . . . 2 .
%e A342997   . 2 . . .   . . 3 . .   . . . 4 .   . . . . 0   1 . . . .
%e A342997   . . . 1 .   . . . . 2   3 . . . .   . 4 . . .   . . 0 . .
%Y A342997 Cf. A006717, A123565, A287648, A338562, A341585, A342998.
%K A342997 nonn,more,hard
%O A342997 0,3
%A A342997 _Eduard I. Vatutin_, Apr 02 2021