cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A342998 Minimum number of diagonal transversals in a cyclic diagonal Latin square of order 2n+1.

This page as a plain text file.
%I A342998 #33 May 05 2021 13:59:16
%S A342998 1,0,5,27,0,4523,128818,0,204330233,11232045257
%N A342998 Minimum number of diagonal transversals in a cyclic diagonal Latin square of order 2n+1.
%C A342998 A cyclic Latin square is a Latin square in which row i is obtained by cyclically shifting row i-1 by d places (see A338562, A123565 and A341585).
%C A342998 Cyclic diagonal Latin squares do not exist for even orders.
%C A342998 a(n) <= A342997(n).
%C A342998 All cyclic diagonal Latin squares are diagonal Latin squares, so A287647(n) <= a((n-1)/2).
%H A342998 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_1412">Enumerating the diagonal transversals for cyclic diagonal Latin squares of orders 1-19</a> (in Russian).
%H A342998 Eduard I. Vatutin, <a href="/A342998/a342998.txt">Proving list (best known examples)</a>.
%H A342998 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.
%e A342998 For n=2 one of best cyclic diagonal Latin squares of order 5
%e A342998   0 1 2 3 4
%e A342998   2 3 4 0 1
%e A342998   4 0 1 2 3
%e A342998   1 2 3 4 0
%e A342998   3 4 0 1 2
%e A342998 has a(2)=5 diagonal transversals:
%e A342998   0 . . . .   . 1 . . .   . . 2 . .   . . . 3 .   . . . . 4
%e A342998   . . 4 . .   . . . 0 .   . . . . 1   2 . . . .   . 3 . . .
%e A342998   . . . . 3   4 . . . .   . 0 . . .   . . 1 . .   . . . 2 .
%e A342998   . 2 . . .   . . 3 . .   . . . 4 .   . . . . 0   1 . . . .
%e A342998   . . . 1 .   . . . . 2   3 . . . .   . 4 . . .   . . 0 . .
%Y A342998 Cf. A006717, A123565, A287647, A287648, A338562, A341585, A342997.
%K A342998 nonn,more,hard
%O A342998 0,3
%A A342998 _Eduard I. Vatutin_, Apr 02 2021