A343001 Square roots of discriminants of cyclic cubic fields.
7, 9, 13, 19, 31, 37, 43, 61, 63, 67, 73, 79, 91, 97, 103, 109, 117, 127, 133, 139, 151, 157, 163, 171, 181, 193, 199, 211, 217, 223, 229, 241, 247, 259, 271, 277, 279, 283, 301, 307, 313, 331, 333, 337, 349, 367, 373, 379, 387, 397, 403, 409, 421, 427
Offset: 1
Examples
7 is a term since 7^2 = 49 is the discriminant of the cyclic cubic field Q[x]/(x^3 - x^2 - 2*x + 1). 9 is a term since 9^2 = 81 is the discriminant of the cyclic cubic field Q[x]/(x^3 - 3*x - 1).
Links
- Jianing Song, Table of n, a(n) for n = 1..3200
- LMFDB, Cubic fields
- Wikipedia, Cubic field
- Ka Lun Wong, Maximal Unramified Extensions of Cyclic Cubic Fields, (2011), Theses and Dissertations, 2781.
Crossrefs
Discriminants and their square roots of cyclic cubic fields:
At least 1 associated cyclic cubic field: A343000, this sequence.
Programs
-
PARI
isA343001(n) = my(L=factor(n), w=omega(n)); for(i=1, w, if(!((L[i,1]%3==1 && L[i,2]==1) || L[i,1]^L[i,2] == 9), return(0))); (n>1)
Formula
a(n) = sqrt(A343001(n)).
Comments