This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343002 #17 Apr 03 2021 12:13:42 %S A343002 3969,8281,13689,17689,29241,47089,61009,67081,77841,90601,110889, %T A343002 149769,162409,182329,219961,231361,261121,301401,305809,312481, %U A343002 346921,363609,431649,461041,494209,505521,519841,582169,628849,667489,758641,762129,790321,859329,900601,946729,962361 %N A343002 Discriminants with exactly 2 associated cyclic cubic fields. %C A343002 A cubic field is cyclic if and only if its discriminant is a square. Hence all terms are squares. %C A343002 Numbers of the form k^2 where A160498(k) = 4. %C A343002 Numbers of the form k^2 where k is of the form (i) 9p, where p is a prime congruent to 1 modulo 3; (ii) pq, where p, q are distinct primes congruent to 1 modulo 3. %C A343002 Products of two nonequal terms in A343022. %C A343002 In general, there are exactly 2^(t-1) (cyclic) cubic fields with discriminant k^2 if and only if k is of the form (p_1)*(p_2)*...*(p_t) or 9*(p_1)*(p_2)*...*(p_{t-1}) with distinct primes p_i == 1 (mod 3), See A343000 for more detailed information. %H A343002 Jianing Song, <a href="/A343002/b343002.txt">Table of n, a(n) for n = 1..10000</a> %H A343002 LMFDB, <a href="https://www.lmfdb.org/NumberField/?degree=3">Cubic fields</a> %H A343002 Wikipedia, <a href="https://en.m.wikipedia.org/wiki/Cubic_field">Cubic field</a> %F A343002 a(n) = A343003(n)^2. %e A343002 3969 = 63^2 is a term since it is the discriminant of the 2 cyclic cubic fields Q[x]/(x^3 - 21x - 28) and Q[x]/(x^3 - 21x - 35). %e A343002 8281 = 91^2 is a term since it is the discriminant of the 2 cyclic cubic fields Q[x]/(x^3 - x^2 - 30x + 64) and Q[x]/(x^3 - x^2 - 30x - 27). %o A343002 (PARI) isA343002(n) = if(omega(n)==2, if(n==3969, 1, my(L=factor(n)); L[2,1]%3==1 && L[2,2]==2 && ((L[1,1]%3==1 && L[1,2]==2) || L[1,1]^L[1,2] == 81)), 0) %Y A343002 Discriminants and their square roots of cyclic cubic fields: %Y A343002 At least 1 associated cyclic cubic field: A343000, A343001. %Y A343002 Exactly 1 associated cyclic cubic field: A343022, A002476 U {9}. %Y A343002 At least 2 associated cyclic cubic fields: A343024, A343025. %Y A343002 Exactly 2 associated cyclic cubic fields: this sequence, A343003. %Y A343002 Cf. A006832, A160498, A343023. %K A343002 nonn,easy %O A343002 1,1 %A A343002 _Jianing Song_, Apr 02 2021