cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343007 Relative position of the average value between two consecutive partial sums of the Leibniz formula for Pi.

This page as a plain text file.
%I A343007 #32 May 06 2021 22:56:46
%S A343007 6,13,26,41,62,85,114,145,182,221,266,313,366,421,482,545,614,685,762,
%T A343007 841,926,1013,1106,1201,1302,1405,1514,1625,1742,1861,1986,2113,2246,
%U A343007 2381,2522,2665,2814,2965,3122,3281,3446,3613,3786,3961,4142,4325,4514,4705
%N A343007 Relative position of the average value between two consecutive partial sums of the Leibniz formula for Pi.
%C A343007 Define L(n) to be the n-th partial sum of the Leibniz formula Pi = 4 - 4/3 + 4/5 - 4/7 + ..., i.e., L(n) = Sum_{j=1..n} 4*(-1)^(j+1)/(2*j-1). For every positive integer n, L(n+1) is closer to Pi than L(n) is. If we let V be the average of the two consecutive partial sums L(n) and L(n+1), then the partial sums that lie closest to V are L(a(n)-1) and L(a(n)+1) (one of which is above V, the other below).
%H A343007 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-2,1).
%F A343007 a(1) = 6; a(n) = a(n-1) + r(n), where r(n) = A047550(n) = 4*n - (-1)^n.
%F A343007 G.f.: x*(6 + x + x^3)/((1 + x)*(1 - x)^3). - _Jinyuan Wang_, Apr 03 2021
%F A343007 From _Stefano Spezia_, Apr 03 2021: (Start)
%F A343007 a(n) = (3 + (-1)^(n+1) + 4*n + 4*n^2)/2.
%F A343007 a(2*n) = A102083(n).
%F A343007 a(2*n-1) = A254527(n). (End)
%e A343007 The first several partial sums are as follows:
%e A343007   n      L(n)
%e A343007   -  ------------
%e A343007   1  4.0000000000
%e A343007   2  2.6666666...
%e A343007   3  3.4666666...
%e A343007   4  2.8952380...
%e A343007   5  3.3396825...
%e A343007   6  2.9760461...
%e A343007   7  3.2837384...
%e A343007   8  3.0170718...
%e A343007 .
%e A343007 For n=1, the average of the partial sums L(1) and L(2) is V = (L(1) + L(2))/2 = (4 + 2.6666666...)/2 = 3.3333333...; the two partial sums closest to V are L(5)=3.3396825... and L(7)=3.2837384..., and V lies in the interval between them, so a(1)=6.
%e A343007 The formula as it is written works for all data in the sequence, but it needs to be proven that it works for all possible integer values of n.
%t A343007 Rest@ CoefficientList[Series[x (6 + x + x^3)/((1 + x) (1 - x)^3), {x, 0, 48}], x] (* _Michael De Vlieger_, Apr 05 2021 *)
%Y A343007 Cf. A047550, A102083, A254527.
%K A343007 nonn,easy
%O A343007 1,1
%A A343007 _Raphael Ranna_, Apr 02 2021