A343015 Decimal expansion of the probability that at least 2 of 23 randomly selected people share a birthday, considering leap years.
5, 0, 6, 8, 7, 6, 0, 9, 3, 1, 6, 5, 2, 7, 8, 4, 5, 5, 2, 2, 2, 4, 3, 9, 3, 1, 3, 1, 6, 0, 5, 1, 1, 2, 3, 7, 7, 7, 3, 5, 2, 6, 9, 9, 8, 2, 5, 4, 8, 5, 2, 6, 1, 0, 5, 6, 1, 9, 4, 1, 2, 1, 4, 3, 8, 1, 4, 1, 3, 7, 2, 5, 8, 4, 6, 7, 8, 6, 3, 3, 5, 4, 8, 4, 9, 5, 1
Offset: 0
Examples
0.50687609316527845522243931316051123777352699825485...
Links
- M. J. Nandor, Including Leap Year in the Canonical Birthday Problem, The Mathematics Teacher, Vol. 97, No. 2 (2004), pp. 87-89.
- Eric Weisstein's World of Mathematics, Birthday Problem.
- Wikipedia, Birthday problem.
- Wikipedia, Gregorian calendar.
Programs
-
Mathematica
RealDigits[1 - (365!/((365 - 23)! * 365^23)) * (146000/146097)^23 * (1 + 97 * 365 * 23/146000/(366 - 23)), 10, 100][[1]]
Formula
Equals 1 - (365!/((365 - 23)! * 365^23)) * (146000/146097)^23 * (1 + 97 * 365 * 23/146000/(366 - 23)).
Comments