A343023 Number of cyclic cubic fields with discriminant n^2.
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1
Examples
a(7) = 1 since there is only 1 (cyclic) cubic field with discriminant 7^2 = 49 is Q[x]/(x^3 - x^2 + x + 1). a(63) = 2 since there are 2 (cyclic) cubic fields with discriminant 63^2 = 3969: Q[x]/(x^3 - 21x - 28) and Q[x]/(x^3 - 21x - 35). a(819) = 4 since there are 4 (cyclic) cubic fields with discriminant 819^2 = 670761: Q[x]/(x^3 - 273x - 91), Q[x]/(x^3 - 273x - 728), Q[x]/(x^3 - 273x - 1547) and Q[x]/(x^3 - 273x - 1729). a(35) = 0 since it is not of form (p_1)*(p_2)*...*(p_t) or 9*(p_1)*(p_2)*...*(p_{t-1}) with distinct primes p_i == 1 (mod 3). Indeed, there are no (cyclic) cubic fields with discriminant 35^2 = 1225.
Links
- Jianing Song, Table of n, a(n) for n = 1..16000
- LMFDB, Cubic fields
- Wikipedia, Cubic field
- Ka Lun Wong, Maximal Unramified Extensions of Cyclic Cubic Fields, (2011), Theses and Dissertations, 2781.
Crossrefs
Programs
-
PARI
a(n) = if(n<=1, 0, my(L=factor(n), w=omega(n)); for(i=1, w, if(!((L[i, 1]%3==1 && L[i, 2]==1) || L[i, 1]^L[i, 2] == 9), return(0))); 2^(w-1))
Formula
a(n) = A160498(n)/2 for n > 1.
Comments