cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343025 Numbers k such that there are at least 2 cyclic cubic fields with discriminant k^2.

Original entry on oeis.org

63, 91, 117, 133, 171, 217, 247, 259, 279, 301, 333, 387, 403, 427, 469, 481, 511, 549, 553, 559, 589, 603, 657, 679, 703, 711, 721, 763, 793, 817, 819, 871, 873, 889, 927, 949, 973, 981, 1027, 1057, 1099, 1141, 1143, 1147, 1159, 1197, 1251, 1261, 1267
Offset: 1

Views

Author

Jianing Song, Apr 02 2021

Keywords

Comments

It makes no difference if the word "cyclic" is omitted from the title because a cubic field is cyclic if and only if its discriminant is a square.
Numbers k such that A160498(k) >= 4.
Terms in A343001 that are not 9 or a prime.
Different from A343002 since a(31) = 819 = 7*9*13.
In general, there are exactly 2^(t-1) (cyclic) cubic fields with discriminant k^2 if and only if k is of the form (p_1)*(p_2)*...*(p_t) or 9*(p_1)*(p_2)*...*(p_{t-1}) with distinct primes p_i == 1 (mod 3); see A343000 for more detailed information.

Examples

			63 is a term since 63^2 = 3969 is the discriminant of the 2 cyclic cubic fields Q[x]/(x^3 - 21x - 28) and Q[x]/(x^3 - 21x - 35).
819 is a term since 819^2 = 670761 is the discriminant of the 4 cyclic cubic fields Q[x]/(x^3 - 273x - 91), Q[x]/(x^3 - 273x - 728), Q[x]/(x^3 - 273x - 1547) and Q[x]/(x^3 - 273x - 1729).
		

Crossrefs

Discriminants and their square roots of cyclic cubic fields:
At least 1 associated cyclic cubic field: A343000, A343001.
Exactly 1 associated cyclic cubic field: A343022, A002476 U {9}.
At least 2 associated cyclic cubic fields: A343024, this sequence.
Exactly 2 associated cyclic cubic fields: A343002, A343003.

Programs

  • PARI
    isA343025(n) = my(L=factor(n), w=omega(n)); if(w<2, return(0)); for(i=1, w, if(!((L[i, 1]%3==1 && L[i, 2]==1) || L[i, 1]^L[i, 2] == 9), return(0))); 1

Formula

a(n) = sqrt(A343024(n)).