This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343027 #30 Mar 27 2024 10:58:32 %S A343027 2,3,5,6,7,11,12,13,17,18,19,21,22,23,28,29,31,33,37,39,41,43,46,47, %T A343027 51,52,53,54,58,59,61,63,66,67,70,71,73,79,82,83,84,89,93,97,98,101, %U A343027 103,107,109,111,113,115,117,127,131,133,137,139,141,142,148,149 %N A343027 Numbers whose concatenation of prime factors in increasing order is a prime number. %H A343027 Michael S. Branicky, <a href="/A343027/b343027.txt">Table of n, a(n) for n = 1..10000</a> %e A343027 c(1) = 1 not prime -> 1 is not a term. %e A343027 c(2) = 2 prime -> 2 is a term. %e A343027 c(3) = 3 prime -> 3 is a term. %e A343027 c(4) = 22 not prime -> 4 is not a term. %e A343027 c(5) = 5 prime -> 5 is a term. %e A343027 c(6) = 23 prime -> 6 is a term. %p A343027 q:= n-> isprime(parse(cat(sort(map(i-> i[1]$i[2], ifactors(n)[2]))[]))): %p A343027 select(q, [$2..222])[]; # _Alois P. Heinz_, Mar 27 2024 %t A343027 m[{p_, e_}] := Table[p, {e}]; c[w_] := FromDigits[Join @@ IntegerDigits@ w]; Select[ Range@ 150, PrimeQ@ c@ Flatten[m /@ FactorInteger[#]] &] (* _Giovanni Resta_, Apr 23 2021 *) %o A343027 (Python) %o A343027 from sympy import * %o A343027 def b(n): %o A343027 f=factorint(n) %o A343027 l=sorted(f) %o A343027 return 1 if n==1 else int("".join(str(i)*f[i] for i in l)) %o A343027 # print([b(n) for n in range(1, 101)]) %o A343027 for n in range(1,200): %o A343027 if isprime(b(n)): %o A343027 print (n) %Y A343027 Cf. A037276 (concatenate prime factors), A046411. %Y A343027 Cf. A068998. %K A343027 nonn,base %O A343027 1,1 %A A343027 _Wim JA Bruyninckx_, Apr 02 2021