A343030 Number of 1-bits in the binary expansion of n which have an odd number of 0-bits at less significant bit positions.
0, 0, 1, 0, 0, 1, 2, 0, 1, 0, 1, 1, 0, 2, 3, 0, 0, 1, 2, 0, 1, 1, 2, 1, 2, 0, 1, 2, 0, 3, 4, 0, 1, 0, 1, 1, 0, 2, 3, 0, 1, 1, 2, 1, 1, 2, 3, 1, 0, 2, 3, 0, 2, 1, 2, 2, 3, 0, 1, 3, 0, 4, 5, 0, 0, 1, 2, 0, 1, 1, 2, 1, 2, 0, 1, 2, 0, 3, 4, 0, 1, 1, 2, 1, 1, 2, 3
Offset: 0
Examples
n = 628 = binary 1001110100 ^ ^^^ a(n) = 4
Links
- Kevin Ryde, Table of n, a(n) for n = 0..8192
Programs
-
PARI
a(n) = my(t=0,ret=0); for(i=0,if(n,logint(n,2)), if(bittest(n,i), ret+=t, t=!t)); ret;
-
Python
def a(n): b = bin(n)[2:] return sum(bi=='1' and b[i:].count('0')%2==1 for i, bi in enumerate(b)) print([a(n) for n in range(87)]) # Michael S. Branicky, Apr 03 2021
Formula
a(2*n) = A000120(n) - a(n).
a(2*n+1) = a(n).
G.f. satisfies g(x) = (x-1)*g(x^2) + A000120(x^2).
G.f.: (1/2)* Sum_{k>=0} x^(2^k)*( (1-x^(2^k))/(1-x) - Prod_{j=0..k-1} x^(2^j)-1 )/( 1-x^(2*2^k ) ).
a(2(2^n - 1)) = n. - Michael S. Branicky, Apr 03 2021
Comments