cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343030 Number of 1-bits in the binary expansion of n which have an odd number of 0-bits at less significant bit positions.

Original entry on oeis.org

0, 0, 1, 0, 0, 1, 2, 0, 1, 0, 1, 1, 0, 2, 3, 0, 0, 1, 2, 0, 1, 1, 2, 1, 2, 0, 1, 2, 0, 3, 4, 0, 1, 0, 1, 1, 0, 2, 3, 0, 1, 1, 2, 1, 1, 2, 3, 1, 0, 2, 3, 0, 2, 1, 2, 2, 3, 0, 1, 3, 0, 4, 5, 0, 0, 1, 2, 0, 1, 1, 2, 1, 2, 0, 1, 2, 0, 3, 4, 0, 1, 1, 2, 1, 1, 2, 3
Offset: 0

Views

Author

Kevin Ryde, Apr 03 2021

Keywords

Comments

See A343029 for further notes.

Examples

			n = 628 = binary 1001110100
                 ^  ^^^      a(n) = 4
		

Crossrefs

Cf. A343029, A004718, A000120, A000918 (indices of new highs).

Programs

  • PARI
    a(n) = my(t=0,ret=0); for(i=0,if(n,logint(n,2)), if(bittest(n,i), ret+=t, t=!t)); ret;
    
  • Python
    def a(n):
      b = bin(n)[2:]
      return sum(bi=='1' and b[i:].count('0')%2==1 for i, bi in enumerate(b))
    print([a(n) for n in range(87)]) # Michael S. Branicky, Apr 03 2021

Formula

a(n) = A343029(n) - A004718(n).
a(n) = A000120(n) - A343029(n), where A000120 is the number of 1-bits in n (binary weight).
a(2*n) = A000120(n) - a(n).
a(2*n+1) = a(n).
G.f. satisfies g(x) = (x-1)*g(x^2) + A000120(x^2).
G.f.: (1/2)* Sum_{k>=0} x^(2^k)*( (1-x^(2^k))/(1-x) - Prod_{j=0..k-1} x^(2^j)-1 )/( 1-x^(2*2^k ) ).
a(2(2^n - 1)) = n. - Michael S. Branicky, Apr 03 2021