This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A343033 #14 Apr 08 2021 10:48:35 %S A343033 1,1,1,1,2,1,1,3,3,1,1,2,5,2,1,1,5,3,3,5,1,1,6,7,4,7,6,1,1,7,15,5,5, %T A343033 15,7,1,1,2,11,6,11,6,11,2,1,1,3,3,7,35,35,7,3,3,1,1,10,5,4,13,30,13, %U A343033 4,5,10,1,1,11,21,9,5,77,77,5,9,21,11,1 %N A343033 Array T(n, k), n, k > 0, read by antidiagonals; a variant of lunar multiplication (A087062) based on prime exponents of numbers (see Comments section for precise definition). %C A343033 To compute T(n, k): %C A343033 - write the prime exponents of n and of k on two lines, right aligned (these lines correspond to rows of A067255 in reversed order), %C A343033 - to "multiply" two prime numbers: take the smallest, %C A343033 - to "add" two prime numbers: take the largest, %C A343033 - for example, for T(12, 14): %C A343033 (11 7 5 3 2) %C A343033 12 --> 1 2 %C A343033 14 --> x 1 0 0 1 %C A343033 --------- %C A343033 1 1 %C A343033 0 0 %C A343033 0 0 %C A343033 + 1 1 %C A343033 ----------- %C A343033 1 1 0 1 1 --> 462 = T(12, 14) %C A343033 This sequence is closely related to lunar multiplication (A087062): %C A343033 - for any b > 1, let S_b be the set of nonnegative integers m such that A051903(m)< b, %C A343033 - there is a natural bijection f from S_b to the set of nonnegative integers: %C A343033 f(Product_{k >= 0} prime(k)^d(k)) = Sum_{k >= 0} d(k) * b^k, %C A343033 - let g be the inverse of f, %C A343033 - then for any numbers n and k in S_b, we have: %C A343033 T(n, k) = g(f(n) "*" f(k)) where "*" denotes lunar product in base b, %C A343033 - the corresponding addition table is A003990. %H A343033 Rémy Sigrist, <a href="/A343033/b343033.txt">Table of n, a(n) for n = 1..10011</a> %H A343033 <a href="/index/Di#dismal">Index entries for sequences related to dismal (or lunar) arithmetic</a> %F A343033 T(n, k) = T(k, n). %F A343033 T(n, 1) = 1. %F A343033 T(n, 2) = A007947(n). %F A343033 T(n, 3) = A328915(n). %F A343033 T(n, 4) = A007948(n). %F A343033 T(n, n) = A343035(n). %F A343033 A051903(T(n, k)) = min(A051903(n), A051903(k)). %e A343033 Array T(n, k) begins: %e A343033 n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 %e A343033 ---- - -- -- -- -- --- --- -- -- --- --- --- --- --- %e A343033 1| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 %e A343033 2| 1 2 3 2 5 6 7 2 3 10 11 6 13 14 --> A007947 %e A343033 3| 1 3 5 3 7 15 11 3 5 21 13 15 17 33 --> A328915 %e A343033 4| 1 2 3 4 5 6 7 4 9 10 11 12 13 14 --> A007948 %e A343033 5| 1 5 7 5 11 35 13 5 7 55 17 35 19 65 %e A343033 6| 1 6 15 6 35 30 77 6 15 210 143 30 221 462 %e A343033 7| 1 7 11 7 13 77 17 7 11 91 19 77 23 119 %e A343033 8| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 %e A343033 9| 1 3 5 9 7 15 11 9 25 21 13 45 17 33 %e A343033 10| 1 10 21 10 55 210 91 10 21 110 187 210 247 910 %e A343033 11| 1 11 13 11 17 143 19 11 13 187 23 143 29 209 %e A343033 12| 1 6 15 12 35 30 77 12 45 210 143 60 221 462 %e A343033 13| 1 13 17 13 19 221 23 13 17 247 29 221 31 299 %e A343033 14| 1 14 33 14 65 462 119 14 33 910 209 462 299 238 %o A343033 (PARI) T(n,k) = { my (r=1, pp=factor(n)[,1]~, qq=factor(k)[,1]~); for (i=1, #pp, for (j=1, #qq, my (p=prime(primepi(pp[i])+primepi(qq[j])-1), v=valuation(r, p), w=min(valuation(n, pp[i]), valuation(k, qq[j]))); if (w>v, r*=p^(w-v)))); r } %Y A343033 Cf. A003990, A007947, A007948, A051903, A067255, A087062, A328915, A342767, A343035. %K A343033 nonn,tabl %O A343033 1,5 %A A343033 _Rémy Sigrist_ and _N. J. A. Sloane_, Apr 03 2021