cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A343033 Array T(n, k), n, k > 0, read by antidiagonals; a variant of lunar multiplication (A087062) based on prime exponents of numbers (see Comments section for precise definition).

This page as a plain text file.
%I A343033 #14 Apr 08 2021 10:48:35
%S A343033 1,1,1,1,2,1,1,3,3,1,1,2,5,2,1,1,5,3,3,5,1,1,6,7,4,7,6,1,1,7,15,5,5,
%T A343033 15,7,1,1,2,11,6,11,6,11,2,1,1,3,3,7,35,35,7,3,3,1,1,10,5,4,13,30,13,
%U A343033 4,5,10,1,1,11,21,9,5,77,77,5,9,21,11,1
%N A343033 Array T(n, k), n, k > 0, read by antidiagonals; a variant of lunar multiplication (A087062) based on prime exponents of numbers (see Comments section for precise definition).
%C A343033 To compute T(n, k):
%C A343033 - write the prime exponents of n and of k on two lines, right aligned (these lines correspond to rows of A067255 in reversed order),
%C A343033 - to "multiply" two prime numbers: take the smallest,
%C A343033 - to "add" two prime numbers: take the largest,
%C A343033 - for example, for T(12, 14):
%C A343033                 (11 7 5 3 2)
%C A343033     12 -->              1 2
%C A343033     14 -->        x 1 0 0 1
%C A343033                   ---------
%C A343033                         1 1
%C A343033                       0 0
%C A343033                     0 0
%C A343033                 + 1 1
%C A343033                 -----------
%C A343033                   1 1 0 1 1  --> 462 = T(12, 14)
%C A343033 This sequence is closely related to lunar multiplication (A087062):
%C A343033 - for any b > 1, let S_b be the set of nonnegative integers m such that A051903(m)< b,
%C A343033 - there is a natural bijection f from S_b to the set of nonnegative integers:
%C A343033         f(Product_{k >= 0} prime(k)^d(k)) = Sum_{k >= 0} d(k) * b^k,
%C A343033 - let g be the inverse of f,
%C A343033 - then for any numbers n and k in S_b, we have:
%C A343033         T(n, k) = g(f(n) "*" f(k)) where "*" denotes lunar product in base b,
%C A343033 - the corresponding addition table is A003990.
%H A343033 Rémy Sigrist, <a href="/A343033/b343033.txt">Table of n, a(n) for n = 1..10011</a>
%H A343033 <a href="/index/Di#dismal">Index entries for sequences related to dismal (or lunar) arithmetic</a>
%F A343033 T(n, k) = T(k, n).
%F A343033 T(n, 1) = 1.
%F A343033 T(n, 2) = A007947(n).
%F A343033 T(n, 3) = A328915(n).
%F A343033 T(n, 4) = A007948(n).
%F A343033 T(n, n) = A343035(n).
%F A343033 A051903(T(n, k)) = min(A051903(n), A051903(k)).
%e A343033 Array T(n, k) begins:
%e A343033   n\k|  1   2   3   4   5    6    7   8   9   10   11   12   13   14
%e A343033   ----  -  --  --  --  --  ---  ---  --  --  ---  ---  ---  ---  ---
%e A343033     1|  1   1   1   1   1    1    1   1   1    1    1    1    1    1
%e A343033     2|  1   2   3   2   5    6    7   2   3   10   11    6   13   14  --> A007947
%e A343033     3|  1   3   5   3   7   15   11   3   5   21   13   15   17   33  --> A328915
%e A343033     4|  1   2   3   4   5    6    7   4   9   10   11   12   13   14  --> A007948
%e A343033     5|  1   5   7   5  11   35   13   5   7   55   17   35   19   65
%e A343033     6|  1   6  15   6  35   30   77   6  15  210  143   30  221  462
%e A343033     7|  1   7  11   7  13   77   17   7  11   91   19   77   23  119
%e A343033     8|  1   2   3   4   5    6    7   8   9   10   11   12   13   14
%e A343033     9|  1   3   5   9   7   15   11   9  25   21   13   45   17   33
%e A343033    10|  1  10  21  10  55  210   91  10  21  110  187  210  247  910
%e A343033    11|  1  11  13  11  17  143   19  11  13  187   23  143   29  209
%e A343033    12|  1   6  15  12  35   30   77  12  45  210  143   60  221  462
%e A343033    13|  1  13  17  13  19  221   23  13  17  247   29  221   31  299
%e A343033    14|  1  14  33  14  65  462  119  14  33  910  209  462  299  238
%o A343033 (PARI) T(n,k) = { my (r=1, pp=factor(n)[,1]~, qq=factor(k)[,1]~); for (i=1, #pp, for (j=1, #qq, my (p=prime(primepi(pp[i])+primepi(qq[j])-1), v=valuation(r, p), w=min(valuation(n, pp[i]), valuation(k, qq[j]))); if (w>v, r*=p^(w-v)))); r }
%Y A343033 Cf. A003990, A007947, A007948, A051903, A067255, A087062, A328915, A342767, A343035.
%K A343033 nonn,tabl
%O A343033 1,5
%A A343033 _Rémy Sigrist_ and _N. J. A. Sloane_, Apr 03 2021